
1. Introduction
Many natural and industrial processes involve subsurface fluid flow, including groundwater hydrology 
(Bear, 2013; Freeze & Cherry, 1979), energy extraction (Lake, 1989; Orr & Taber, 1984), geological storage of 
carbon dioxide and hydrogen (Heinemann et al., 2021; Szulczewski et al., 2012). Permeability, which measures 
the ease with which fluids pass through a porous medium, is a fundamental parameter governing fluid flow in 
the subsurface. Traditionally, permeability is measured by flowing a pressurized gas or liquid through a core 
sample extracted from underground drilling (Bear & Bachmat, 1991). However, laboratory permeability charac-
terization is complex and time-consuming, and it requires the use of specialized and highly calibrated equipment. 
Recent advances in three-dimensional (3D) imaging technologies such as X-ray micro-computed tomography 
(micro-CT) have enabled the creation of digital twins of core samples, which can then be used for permeability 
characterization (Andrä et al., 2013; Berg et al., 2017; Spanne et al., 1994).

The current benchmark for digital permeability characterization is achieved through high-resolution computa-
tional fluid dynamics (CFD) simulation of single-phase flow through digital rock samples, which provides accu-
rate predictions for a variety of rock types, including sandstones, limestones, and carbonates (Blunt et al., 2013; 
Boek & Venturoli,  2010; Chen & Doolen,  1998; Dong & Blunt,  2009; Manwart et  al.,  2002; Mostaghimi 
et al., 2013). However, due to the exorbitant computational cost in terms of memory and processing time, digital 
permeability characterization via high-resolution CFD simulation is still limited to samples typically smaller than 
the representative elementary volume (REV). Even with the application of parallel computing, direct numerical 
simulation of flow in 3D porous media is still computationally expensive (Wang et al., 2019). For example, a 
5 mm 3 carbonate core sample is thought to require ∼10 13 grid cells to simulate (Blunt et al., 2013). Therefore, 
existing direct numerical simulations are limited to studying subsections of core samples, whose permeabilities 
exhibit a large amount of scatter due to the small-scale heterogeneities of natural porous media.

More recently, advances in 3D convolutional neural networks (CNNs) have enabled end-to-end permeability 
prediction of digital rock samples with great accuracy, generalizability, and efficiency (Alqahtani et al., 2021; 
Elmorsy et al., 2022). However, the size of the digital samples that 3D CNNs can predict remains very small, 
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since their training data is derived from high-resolution CFD simulations. Therefore, alternative more efficient 
methods are needed to predict the permeability of digital rock samples at the core-scale (Tahmasebi et al., 2020).

One way to reduce the computational demand is downscaling the high-resolution images and perform direct numer-
ical simulations on a low-resolution domain. However, this approach has been shown to miss key micro-structure 
information, leading to erroneous results (Zhang et al., 2022). Pore network modeling of permeability is another 
example of downscaling, whereby the complex 3D pore geometry is idealized as a lattice of connected pores and 
throats (Blunt, 2001, 2017). In general, permeability prediction obtained from pore network modeling is less accu-
rate than direct numerical simulation due to ambiguities involved in network extraction (Dong & Blunt, 2009). An 
alternative approach to downscaling is upscaling, where one combines permeabilities obtained from fine-scale 
simulations on smaller subsections that are computationally tractable to predict the bulk permeability of the larger 
domain. Homogenization is a commonly used method in upscaling, which predicts the effective property of a 
slowly varying macroscopic medium based on its complex, rapidly varying microscopic constituents.

Permeability upscaling has been studied extensively in the past decades. Cardwell and Parsons  (1945) found 
that in general, the effective permeability of a block of porous media partitioned into smaller sub-blocks with 
different permeabilities ranges from the harmonic and arithmetic average of the permeabilities of the sub-blocks. 
King (1989) conducted upscaling by representing a simple porous medium consisting of 2 × 2 isotropic sub-blocks 
with different permeabilities as an equivalent resistor network, taking advantage of the similarity between fluid 
movement through porous media and electric current flow through electric circuits, since single-phase Darcy’s 
law shares the same mathematical formulation as Ohm’s law. This equivalent resistor network is then reduced to a 
single resistor, whose resistance represents the inverse of the porous medium’s effective permeability. In 2D, this 
approach results in a closed-form formula for the block permeability. Therefore, the permeability of a 2D square 
domain consisting of 2 n sub-blocks can be calculated by recursively applying the formula for upscaling 2 × 2 
sub-blocks. This elegant approach to upscaling is often referred to as renormalization.

However, for the simplest 3D block, which consists of 2 × 2 × 2 isotropic sub-blocks, King (1989) could only 
provide a graphical representation of the resistor network, and they stated that upscaling in 3D does not result 
in a simple closed-form expression. Green and Paterson (2007) developed an approximate analytical formula to 
this problem by representing the 3D block as four 2 × 2 blocks. The effective permeabilities of the 2 × 2 blocks 
were calculated using King (1989)’s formula, and the effective permeability of the 3D block was approximated as 
the arithmetic mean of the four 2 × 2 blocks. Similarly, Karim and Krabbenhoft (2010) provided an approximate 
analytical solution to the problem by first calculating the effective permeabilities of the four 2 × 1 sub-blocks in 
series and the two 2 × 2 sub-blocks in parallel. The effective permeability of the 3D block is given by the geomet-
ric mean of the effective permeabilities of the sub-blocks in series and the sub-blocks in parallel.

Bashtani et al. (2018) evaluated the effective permeability of four synthetic porous media samples based on the 
permeabilities of the eight 2 × 2 × 2 sub-blocks using Karim and Krabbenhoft (2010)’s approximate analytical 
solution. The upscaled permeabilities had errors ranging from 2.7% to 11.5% compared to those acquired directly 
from pore network modeling. They noted that the error grows as the sample becomes more heterogeneous. More 
recently, Zhang et al. (2022) calculated the effective permeabilities of three digital carbonate rock samples (each 
consisting of eight sub-blocks) using Karim and Krabbenhoft (2010)’s analytical solution, which yielded predic-
tions that had relative errors in the range of ∼40% when compared to the permeabilities obtained from pore 
network modeling. To increase the prediction accuracy, they took sub-samples of each carbonate sample and 
related the predictions of the analytical solution to those of pore network modeling via a simple first-order 
linear regression model. They subsequently used this model to improve the analytical predictions of the full-size 
carbonate samples. However, they highlighted the fact that the process of generating the required data to fit the 
regression models consumed significant amount of computation time. Furthermore, this approach is not a gener-
alizable, since a separate regression model is needed for each rock sample.

By using a different approach, Menke et  al.  (2021) combined machine learning with numerical simulation and 
informed structural analysis to upscale the permeability of heterogeneous porous media. Specifically, they introduced 
a machine learning-based multivariate structural regression model and predicted the permeability of limestone subvol-
umes of 360 × 360 × 360 cubic voxel in size using the permeabilities of smaller subvolumes of 60 × 60 × 60 and 
120 × 120 × 120 cubic voxel in size. The permeabilities of the smaller subvolumes were predicted by a multivariate 
regression model trained with 18 structural features extracted from micro-CT images. The predicted permeabilities of 
the subvolumes are then fed to a Darcy-Brinkman-Stokes model to calculate the effective permeability of the larger 
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360 × 360 × 360 cubic voxel samples. They found that the machine learning regression model significantly outper-
formed a fitted Kozeny-Carman model. Specifically, the relative mean square error (RMSE) of the Kozeny-Carman 
models’s predictions was 29.7% while the machine learning regression model’s predictions had an RMSE of 4.3%.

In another study, Siavashi et al. (2022) combined CNNs and continuum-scale simulations to upscale permeability 
from low-resolution images. Specifically, high-resolution images of Fontainebleau sandstone samples with labeled 
permeabilities were down-sampled to train a CNN. The trained CNN was then used to predict the permeabilities of 
low-resolution subvolumes 80 × 80 × 80 cubic voxels in size. Finally, a commercial reservoir simulator was used 
to perform a continuum-scale simulation of the reconstructed low-resolution model that utilizes the permeabilities 
predicted by the CNN. The CNN’s permeability prediction achieved coefficient of determination R 2 = 0.99 on the 
80 × 80 × 80 cubic voxel subvolumes, while the bulk permeability predicted by the continuum-scale simulation 
and direct numerical simulation on the low resolution images achieved relative errors of 1.63% and 97.27%, respec-
tively, when compared to the results obtained from direct numerical simulation on the high-resolution images.

To address the drawbacks of existing upscaling approaches including the high computational cost associated with 
direct numerical simulations (Siavashi et al., 2022; Xu et al., 2022), the inaccuracies associated with pore network 
modeling (Dong & Blunt, 2009) and approximate analytical solutions (Wei et al., 2019), the existing literature 
clearly illustrates the need for an efficient, reliable, and accurate upscaling technique. We hypothesize that combin-
ing analytical methods with advanced machine-learning algorithms will significantly improve the accuracy of 
upscaling beyond that of approximate analytical solutions or traditional regression-based machine-learning models. 
Meanwhile, the ability to provide rapid predictions (less than a second) is another key advantage over upscaling 
methods that require direct numerical simulations (hours to days). Furthermore, this approach will expand the 
utility of current machine learning models for permeability prediction to larger sample sizes. For example, our 
previous work (Elmorsy et al., 2022) introduced an advanced 3D CNN model that provides accurate permeability 
prediction of digital rock samples in milliseconds. However, these predictions are limited to subsamples of size 
150 × 150 × 150 cubic voxels, which is often smaller than the REV of the sample. Therefore, the development of a 
fast and accurate upscaling technique will enable permeability prediction of digital rocks of REV size in real time.

Here, we introduce a novel analytical solution based on the physical analogy between Darcy’s law and Ohm’s 
law to approximate the upscaled permeability of 2 × 2 × 2 subsample systems, where each subsample is aniso-
tropic. We then integrate the analytical solution with machine learning algorithms to train two physics-informed 
neural network (PINN) models with hybrid learning schemes for permeability upscaling. We show the PINN 
models achieve rapid permeability upscaling with accuracy beyond that of the analytical solution. Finally, we 
demonstrate that the permeabilities of larger 600 × 600 × 600 cubic voxel sandstone and carbonate samples can 
be accurately predicted by first dividing them into smaller 150 × 150 × 150 cubic voxel subsamples, applying 
a 3D CNN to obtain the permeability of the subsamples, and then recursively applying the upscaling model to 
predict the bulk permeability of the larger samples. Therefore, our model paves the way to real time, end-to-end 
permeability prediction of digital porous media at the core-scale and beyond.

2. Materials and Methods
2.1. Data Preparation and Processing

We use a publicly available set of 3D images of different rock samples to develop the PINN permeability upscal-
ing model (Table 1). These images were previously captured by Imperial College London researchers using a 
synchrotron X-ray beamline or an in-house micro-CT scanner. The same data set has been used to investigate 
various pore-scale flow and transport processes in natural porous media (Blunt et al., 2013; Muljadi et al., 2016). 
The data set is freely accessible via an online portal (Bijeljic & Raeini, 2015). The 3D images represent the inter-
nal pore spaces of the digital rock cores. In particular, we use three sets of 3D images of Bentheimer sandstone, 

Rock type Size (voxels) Resolution (μm/voxel) Porosity (–) Stride (voxel) Number of subvolumes (–) Number of labeled permeabilies (–)

Bentheimer sandstone 1,000 3 3 0.22 50 1,704 5,112

Ketton limestone 1,000 3 3 0.13 50 1,704 5,112

Berea sandstone 712 3 3 0.19 50 1,704 5,112

Table 1 
Digital Rock Samples Used to Develop the Upscaling Methods
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Berea sandstone, and Ketton limestone cores. The Bentheimer sandstone and the Ketton limestone images are 
1,000 × 1,000 × 1,000 cubic voxels in size with a resolution of 3 µm/voxel, while the Berea sandstone core is 
400 × 400 × 400 cubic voxels in size with a resolution of 5.3 µm/voxel. To unify the scale of all samples in our 
study, we rescale the Berea sandstone images to 712 × 712 × 712 cubic voxels, such that each voxel corresponds 
to a physical dimension of 3 µm. By calculating the porosity of the rescaled samples, we found they are within 
∼2% of the original sample porosity, which verifies the rescaling technique. Then, we extract subvolumes from 
the 3D images by applying a sliding cube of 150 × 150 × 150 cubic voxels with an overlapping stride of 50 voxels 
(Table 1).

We numerically determine the subvolumes’ permeabilities using OpenFOAM®, which is an open-source set 
of solvers for CFD simulations (Horgue et  al.,  2015). We employ OpenFOAM® to model incompressible 
steady-state viscous flow by solving the Navier-Stokes equation. The pressure and velocity of the fluid flow are 
solved iteratively using the semi-implicit method for pressure-linked equations algorithm. For each subvolume, 
we simulate water flow along each of the principal axes (i.e., x, y, z). We apply a total pressure drop of Δp = 1 Pa 
across the bounding surfaces that are normal to the flow direction (i.e., inlet and outlet) and keep the remaining 
bounding surfaces as no-flow boundaries. The no-slip boundary condition is applied to the solid surfaces in the 
computational domain. The simulation produces a steady-state velocity field across the entire subvolume. In the 
end, we compute the volumetric flux Q through the subvolume by integrating the velocities normal to the outlet 
surface (Equation 1a) and use Darcy’s law to get the subvolume’s absolute permeability k (Equation 1b).

�� = ∬ ��dA (1a)

𝑘𝑘𝑖𝑖 =
𝑄𝑄𝑖𝑖𝜇𝜇𝜇𝜇

Δ𝑝𝑝𝑝𝑝
, (1b)

where i = x, y, z are the principal axes, μ is the dynamic viscosity of water, L is the length of the subvolume, and 
A is the area of the bounding surface.

We completed over 15,336 permeability simulations of the 150 × 150 × 150 subvolume data set. This data set is 
subsequently used as the input for the permeability upscaling models. We investigate the porosity ϕ and perme-
ability anisotropy Ia of the subvolumes (Figure 1), where Ia is a 3D estimation of the deviation from isotropy 
(Clavaud et al., 2008).

𝑘𝑘iso = (𝑘𝑘min𝑘𝑘int𝑘𝑘max)

1

3 , (2a)

𝐼𝐼𝑎𝑎 =

[

(𝑘𝑘min − 𝑘𝑘iso)
2
+ (𝑘𝑘int − 𝑘𝑘iso)

2
+ (𝑘𝑘max − 𝑘𝑘iso)

2

𝑘𝑘2

min
+ 𝑘𝑘2

int
+ 𝑘𝑘2

max

]

1

2

, (2b)

where kiso represents the equivalent isotropic permeability of a given subvolume, and kmin, kint, and kmax are its mini-
mum, intermediate and maximum permeabilities, respectively. When referring to geologic porous media, rock 
samples with Ia < 0.15 are considered relatively isotropic, while rock samples with Ia > 0.4 are considered highly 
anisotropic (Clavaud et al., 2008). Our data set comprises of a sizable percentage of highly anisotropic subvolumes 
and a broad range of Ia values (Figures 1b, 1d, and 1f). This is crucial to make sure the model is broadly applicable 
to a wide range of heterogeneity and that its usefulness is not limited to isotropic and homogenous samples.

We stitch together every eight neighboring subvolumes to obtain a total of 639 300 × 300 × 300 cubic voxel 
volumes, which serve as the training data set for the PINN permeability upscaling models (Figure 9). We deter-
mine the permeability of the larger samples in three directions using OpenFOAM®. Our data set consists of 
1,917 300 × 300 × 300 cubic voxel volumes and 15,336 150 × 150 × 150 cubic voxel subvolumes with labeled 
permeabilities, which are randomly split into training and testing data sets with a 20–80 split (Figures 2a and 2b).

We also incorporate data augmentation to further increase the size of our data set. Simple image manipulations such as 
flipping and rotation are commonly used methods for data augmentation in machine learning and they have been used 
in benchmark data sets including CIFAR-10 and ImageNet (Shorten & Khoshgoftaar, 2019), as well as more recently 
in digital rock analysis (Elmorsy et al., 2022). To produce four separate subvolumes with the same permeability value, 
we flip each 2D image slice of each 3D subvolume horizontally and vertically. Then we reverse the ordering of the 
consecutive 2D image slices to obtain four additional distinct subvolumes with the same permeability value. The data 
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augmentation process increases the original training data set size by eight times. In the end, we compiled a data set of 
12,272 300 × 300 × 300 cubic voxel volumes and 98,176 150 × 150 × 150 cubic voxel subvolumes.

The permeability of the target data set (i.e., 300 × 300 × 300 cubic voxel volumes) ranges from 1,000 to over 
5,000 mD, and its distribution is positively skewed with a long tail in the area corresponding to high permea-
bility values (Figures  2a and  2b). The skewness of the data set (i.e., unbalanced) presents a training challenge 
for machine learning models since they tend to treat the tail area of the distribution as outliers, producing biased 
predictions that correlate to the most common values in the training data (Bauder & Khoshgoftaar, 2018; Johnson & 
Khoshgoftaar, 2019; Olson, 2004). Therefore, it is highly challenging for machine learning models to adequately learn 
from unbalanced data sets (Bauder et al., 2018; Bauder & Khoshgoftaar, 2018). Here, we use the under-sampling 
technique to transform our data set into a balanced data set (Fernández et al., 2018; Torgo et al., 2015). Specifically, 
the augmented data set of 300 × 300 × 300 cubic voxel subvolumes is divided into bins that each cover a permeability 

Figure 1. The porosity and anisotropy index distributions for the input data set (i.e., 150 × 150 × 150 cubic voxel 
subvolumes) for the (a, b) Berea sandstone, (c, d) Bentheimer sandstone, and (e, f) Ketton limestone. The porosity ranges 
from 0.041 to 0.481, and the anisotropy index ranges from ≈0 (i.e., isotropic) to ≈1 (i.e., extremely anisotropic). The blue 
dashed line and the red dashed line indicate the median and the mean values, respectively.
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interval of 100 mD, and 120 subvolumes are then randomly chosen from each bin (Figure 2c). Finally, we obtain a 
uniformly distributed data set with permeability values ranging from 1,000 to 5,000 mD (Figure 2d). We then locate 
the corresponding 150 × 150 × 150 cubic voxel subvolumes that make up the 300 × 300 × 300 cubic voxel from the 
balanced data set. We only balance the 300 × 300 × 300 cubic voxel data set since this is the one whose permeability 
values are used as target labels in training the machine learning model. The permeabilities of the corresponding 
150 × 150 × 150 cubic voxel subvolumes are used as input values for the model. During the model training process, 
the training data set is further split into validation and training subsets with the same 20–80 split ratio.

2.2. Analytical Approach

We develop a novel analytical expression to approximate the upscaled permeability of a volume consisting 
of 2  ×  2  ×  2 cell blocks with anisotropic permeabilities, based on methodologies introduced by Green and 
Paterson  (2007) and King (1989). Specifically, King  (1989) utilized the equivalent resistor model to find the 
upscaled effective permeability of 2 × 2 isotropic cell blocks (Figure 3a):

𝐾𝐾eff(2D)(𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, 𝑘𝑘4) = 4(𝑘𝑘1 + 𝑘𝑘3)(𝑘𝑘1 + 𝑘𝑘4)[𝑘𝑘2𝑘𝑘4(𝑘𝑘1 + 𝑘𝑘3) + 𝑘𝑘1𝑘𝑘3(𝑘𝑘2 + 𝑘𝑘4)] ×

{[𝑘𝑘2𝑘𝑘4(𝑘𝑘1 + 𝑘𝑘3) + 𝑘𝑘1𝑘𝑘3(𝑘𝑘2 + 𝑘𝑘4)] (𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3 + 𝑘𝑘4) +

3(𝑘𝑘1 + 𝑘𝑘2)(𝑘𝑘3 + 𝑘𝑘4)(𝑘𝑘1 + 𝑘𝑘3)(𝑘𝑘2 + 𝑘𝑘4)}
−1
.

 (3)

King (1989) could not extend the same graphical scheme to achieve an analytical expression for the upscaled perme-
ability of 2 × 2 × 2 isotropic cell blocks in 3D, since the problem does not result in a simple closed-form expression 
(King, 1989). Later on, Green and Paterson (2007) used symbolic computation to mathematically solve the graph-
ical scheme to upscale the 2 × 2 × 2 isotropic cell block. However, the exact solution was prohibitively large and 
too complex to simplify. Specifically, the full analytical expression had 282,844 “+” signs and was impossible to 
be presented in their paper. To simplify the analytical solution, they introduced an approximation to the 2 × 2 × 2 

Figure 2. Permeability distributions of the (a) training and (b) testing data sets that consist of 300 × 300 × 300 cubic voxel 
volumes. (c) Permeability distribution of the augmented training data set resembles a log-normal distribution, with a long tail 
in the region corresponding to high permeability values. (d) We randomly sample 120 subvolumes from each 100 mD interval 
from the augmented data set in the range between 1,000 and 5,000 mD to construct a balanced data set.
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isotropic cell block problem by assuming that fluid flows from the center of one cell to the center of each adjacent 
cell. It follows, then, that if the 2 × 2 × 2 cell block is divided into four halves, namely the top/bottom halves and 
the front/back halves (Figure 3b), the four newly constructed 2 × 2 cell blocks account for all feasible linkages. The 
effective permeability of each 2 × 2 cell block may be determined using Equation 3. The effective permeability of 
the 3D 2 × 2 × 2 cell block is then calculated as the average of the four 2D cell blocks’ effective permeabilities,

𝐾𝐾eff(3D)(𝑘𝑘1, ..., 𝑘𝑘8) =
1

4

[

𝐾𝐾eff(2D)(𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, 𝑘𝑘4)

+ 𝐾𝐾eff(2D)(𝑘𝑘5, 𝑘𝑘6, 𝑘𝑘7, 𝑘𝑘8)

+ 𝐾𝐾eff(2D)(𝑘𝑘5, 𝑘𝑘6, 𝑘𝑘1, 𝑘𝑘2)

+ 𝐾𝐾eff(2D)(𝑘𝑘7, 𝑘𝑘8, 𝑘𝑘3, 𝑘𝑘4)
]

.

 (4)

Motivated by the resistor model of King (1989) and the simplifying assumption of Green and Paterson (2007), 
we develop a new upscaling solution to calculate the effective permeability of a 2 × 2 × 2 cell block consisting 
of anisotropic cells using the symbolic computation capabilities of the SymPy library in Python. Specif-
ically, each cell block can be represented by a cross resistor whose resistance for a given direction is given 
by 1/k (Figure 4a). Since each cell is anisotropic, the resistance is direction-dependent (i.e., 1/kx ≠ 1/kz). We 
then solve the equivalent resistor network of a 2 × 2 anisotropic cell block in 2D, where each of the four cell 
blocks is represented by a cross resistor. We apply a no-flow boundary condition at the top and bottom edges 

Figure 3. (a) 2D upscaling of 2 × 2 isotropic cell blocks introduced by King (1989). (b) Three-dimensional upscaling of 
2 × 2 × 2 isotropic cell blocks by first dividing the entire cell block into four 2D cell blocks (i.e., top/bottom and front/back 
halves). The effective permeability of the entire cell block is approximated as the average of the 2D cell blocks’ effective 
permeabilities (Green & Paterson, 2007).

Figure 4. (a) We represent each cell with a cross of unequal resistors (i.e., 1/kx ≠ 1/kz). (b) Star-triangle transformation yields an equivalent circuit for three nodes 
joined by three resistors.
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and a uniform pressure boundary condition at the left and right edges of the cell block (Figure 5a). We then 
cut off the dead-end links and bind together the nodes applied with the same pressure (Figure 5b). This resistor 
network can be further simplified into a circuit of series and parallel resistors using the star-triangle transfor-
mation (Figure  5c). The star-triangle transformation is a commonly used transformation in circuit analysis 
(Kennelly, 1899), and it is illustrated in Figure 4b. The resistances of each link in the newly formed circuit 
(Figure 5c) are given by:

𝑎𝑎 =
𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑧𝑧)

2(𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧))
, (5a)

𝑏𝑏 =
𝑘𝑘3(𝑥𝑥)(𝑘𝑘1(𝑧𝑧) + 𝑘𝑘3(𝑧𝑧))

2(𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧))
, (5b)

𝑐𝑐 =
1

2𝑘𝑘2(𝑥𝑥)

+
1

2𝑘𝑘1(𝑥𝑥)

, (5c)

𝑑𝑑 =
𝑘𝑘4(𝑥𝑥)(𝑘𝑘2(𝑧𝑧) + 𝑘𝑘4(𝑧𝑧))

2(𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧))
, (5d)

𝑒𝑒 =
𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑧𝑧)

2(𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧))
, (5e)

𝑓𝑓 =
𝑘𝑘1(𝑥𝑥)(𝑘𝑘1(𝑧𝑧) + 𝑘𝑘3(𝑧𝑧))

2(𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧))
, (5f)

𝑔𝑔 =
1

2𝑘𝑘4(𝑥𝑥)

+
1

2𝑘𝑘3(𝑥𝑥)

, (5g)

ℎ =
𝑘𝑘2(𝑥𝑥)(𝑘𝑘2(𝑧𝑧) + 𝑘𝑘4(𝑧𝑧))

2(𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧))
. (5h)

We further simplify the resistor network by combining the resistors in-series into one equivalent resistor, which 
yields the network shown in Figure 5d. Specifically, resistors b, c, and d combine to form resistor B, and resistors 
f, g, and h combine to form resistor C. The resistances of B and C are given by,

Figure 5. (a) The cross resistors representation of a 2 × 2 anisotropic cell block. (b) We demonstrate the equivalent resistor 
network of a 2 × 2 anisotropic cell block and (c) illustrates its simplification process using star-triangle transformation. (d) 
We introduce the final simple resistance network.
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𝐵𝐵 =
𝑘𝑘3(𝑥𝑥)(𝑘𝑘1(𝑧𝑧) + 𝑘𝑘3(𝑧𝑧))

2(𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧))

+
𝑘𝑘4(𝑥𝑥)(𝑘𝑘2(𝑧𝑧) + 𝑘𝑘4(𝑧𝑧))

2(𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧))

+
1

2𝑘𝑘2(𝑥𝑥)

+
1

2𝑘𝑘1(𝑥𝑥)

 (6a)

𝐶𝐶 =
𝑘𝑘1(𝑥𝑥)(𝑘𝑘1(𝑧𝑧) + 𝑘𝑘3(𝑧𝑧))

2(𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑥𝑥)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧) + 𝑘𝑘1(𝑧𝑧)𝑘𝑘3(𝑥𝑥)𝑘𝑘3(𝑧𝑧))

+
𝑘𝑘2(𝑥𝑥)(𝑘𝑘2(𝑧𝑧) + 𝑘𝑘4(𝑧𝑧))

2(𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑥𝑥)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧) + 𝑘𝑘2(𝑧𝑧)𝑘𝑘4(𝑥𝑥)𝑘𝑘4(𝑧𝑧))

+
1

2𝑘𝑘4(𝑥𝑥)

+
1

2𝑘𝑘3(𝑥𝑥)

.

 (6b)

The effective permeability of the 2 × 2 anisotropic cell block in 2D is then given by

𝐾𝐾eff(2D)(𝑘𝑘1(𝑥𝑥𝑥𝑥𝑥)𝑥 𝑘𝑘2(𝑥𝑥𝑥𝑥𝑥)𝑥 𝑘𝑘3(𝑥𝑥𝑥𝑥𝑥)𝑥 𝑘𝑘4(𝑥𝑥𝑥𝑥𝑥)) =

[

𝑎𝑎 +
𝐵𝐵𝐵𝐵

𝐵𝐵 + 𝐵𝐵
+ 𝑒𝑒

]−1

. (7)

Finally, we calculate the effective permeability of the top, bottom, left, and right 2 × 2 cell blocks in 2D and 
connect them in parallel in a similar fashion as Green and Paterson (2007) to arrive at the effective permeability 
of the 2 × 2 × 2 anisotropic cell block in 3D,

�eff(3D)(�1(�,�,�), ..., �8(�,�,�)) =
1
4
[

�eff(2D)(�5(�,�), �6(�,�), �1(�,�), �2(�,�))

+ �eff(2D)(�5(�,�), �6(�,�), �7(�,�), �8(�,�))

+ �eff(2D)(�7(�,�), �8(�,�), �3(�,�), �4(�,�))

+ �eff(2D)(�1(�,�), �2(�,�), �3(�,�), �4(�,�))
]

.

 (8)

2.3. Physics Informed Neural Network Approach

Physics-informed machine learning is a type of machine learning that combines data and physical models, even 
in poorly understood, ambiguous, and high-dimensional problems (Karniadakis et al., 2021). Despite the success 
many machine learning models have achieved in a wide range of applications, purely data-driven models may 
provide predictions that are physically inconsistent or questionable due to extrapolation or observational biases, 
which could also impair their ability to be generalized (Karniadakis et al., 2021; Kochkov et al., 2021). As a 
result, there has been a rising interest in physics-informed learning (Brunton et al., 2020; Dresdner et al., 2022), 
a method by which previous information derived from our observable, empirical, physical, or mathematical 
understanding of the universe may be used to improve the performance of a machine learning algorithm (Cuomo 
et al., 2022). The family of PINNs is a recent example that exemplifies this new learning methodology. PINNs 
are neural networks that incorporate model equations, like partial differential equations or fractional equations, 
as a component of the neural network itself (Cai et al., 2021). PINNs are neural networks that incorporate model 
equations, like partial differential equations or fractional equations, as a component of the neural network itself 
(Cai et  al.,  2021). In the context of subsurface applications, PINNs have been recently applied to solve both 
single-phase and multiphase flow problems (Tartakovsky et al., 2020), as well as solute transport problems (He 
& Tartakovsky, 2021; Zong et al., 2023).

To physically inform a learning algorithm, observational, learning, or inductive biases are introduced to guide 
the learning process toward finding solutions that are physically consistent (Karniadakis et al., 2021). Obser-
vational biases can be introduced by using data that accurately reflect the underlying physics or through using 
properly designed data augmentation techniques. Such data may be used to train machine learning systems 
so that they can learn operators, vector fields, and functions that represent the physical structure of the data 
(Kashefi et  al.,  2021). Alternatively, learning biases can be created by selecting suitable loss functions, 
constraints, and inference algorithms that alter a machine learning model’s training phase to explicitly encour-
age convergence toward solutions that correspond to the underlying physics. The underlying physical rules 
can only be approximated by employing and modifying soft penalty restrictions. Nonetheless, this approach 

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035064 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [28/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

ELMORSY ET AL.

10.1029/2023WR035064

10 of 17

provides a very flexible platform for adding a large class of physics-based biases that may be written in the form 
of integral, differential, or fractional equations (Geneva & Zabaras, 2020; Kissas et al., 2020; Zhu et al., 2019). 
Lastly, inductive biases related to prior hypotheses that can be incorporated via custom modifications to the 
machine learning model architecture, ensuring that the predictions implicitly satisfy a given set of physical 
laws, which are frequently expressed in the form of specific mathematical expressions (Baddoo et al., 2023; 
Kamrava et  al.,  2021). Since it enables the rigorous fulfillment of the underlying physical limitations, one 
may argue that this is the most rational approach to making a learning system physics-informed (Hamzi & 
Owhadi,  2021; Owhadi & Yoo,  2019). These three paths may be used independently or in combination to 
expedite the training process and improve the generalizability of physics-informed machine-learning models 
(Karniadakis et al., 2021).

We develop two physics-informed learning machines by incorporating at least two physical biases into a neural 
network learning algorithm by combining observational biases with either learning or inductive bias. The 
observational biases are incorporated in both PINNs by adopting the data augmentation procedure described in 
the data subsection. For the first neural network (PINN-1), we use a multilayer neural network that consists of 
an input layer having 24 neurons that receive the permeability values of the eight 150 × 150 × 150 cubic voxel 
subvolumes in three directions (i.e., kx, ky, kz). The input layer is followed by four fully connected layers with 
eight neurons each that extract the latent relationships and hidden features through deep learning, which are 
later used to predict the upscaled permeability of the 300 × 300 × 300 cubic voxel volume in the x-direction 
(i.e., kx) through the final single neuron layer (Figure 6). We note that predicting the upscaled permeability 
in the y- and z-direction using the same model is trivial and it only requires rearranging the input subvolume 
permeabilities. We optimize the network hyper-parameters (i.e., weights and biases) by incorporating a learn-
ing bias that adds a soft penalty constraint by minimizing the training loss of the analytical upscaling solution 
derived above (Equation 8) in addition to the training loss of the observed data. Training the model in this 
fashion tunes the network hyperparameters such that they approximately satisfy the underlying physical laws 
(Karniadakis et  al.,  2021). Specifically, we minimize the following loss function in the training process of 
PINN-1,

losstotal = 𝜆𝜆datalossdata + 𝜆𝜆anallossanal, (9)

Figure 6. The architecture of physics-informed neural network-1 model consists of four dense fully connected layers with 
eight neurons each in addition to the application of a physics-informed loss function.
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where lossdata and lossanal are the loss functions corresponding to the data and the analytical solution, respectively, 
and λdata and λanal are the corresponding regularization coefficients. Here, we use balanced regularization coeffi-
cients (λdata = λanal = 1), which allows the approximate analytical solution to counter overfitting without sacrific-
ing model accuracy gained through training on the data. We calculate the loss functions lossdata and lossanal as the 
mean absolute relative error (MARE),

loss𝑖𝑖 =
| 𝑘𝑘𝑖𝑖 − 𝑘𝑘predicted |

𝑘𝑘𝑖𝑖

, (10)

where kpredicted corresponds to the upscaled effective permeabilities predicted by PINN-1.

For the second network PINN-2, we incorporate an inductive bias in addition to the observational bias. Specif-
ically, PINN-2 consists of two parallel neural network modules. The first module is a conventional multilayer 
network that consists of four fully connected layers with four neurons each, while the second module is a 
physics-informed multilayer PINN whose first layer consists of four physics-informed neurons (Figure 7). We 
use lambda layers to enforce the physics-informed neurons to calculate the effective permeabilities of the top, 
bottom, left, and right 2  ×  2 cell block (Figure  3) using Equation  7. Specifically, the first physics-informed 
neuron calcu lates the effective permeability of the upper 2 × 2 cell block (i.e., Keff(2D)(k5(x,y), k6(x,y), k1(x,y), k2(x,y))), 
the second physics-informed neuron calculates the effective permeability of the lower 2  ×  2 cell block (i.e., 
Keff(2D)(k7(x,y), k8(x,y), k3(x,y), k4(x,y))), the third physics-informed neuron calculates the effective permeability of the 
left 2 × 2 cell block (i.e., Keff(2D)(k5(x,z), k6(x,z), k7(x,z), k8(x,z))), and the fourth physics-informed neuron calculates the 
effective permeability of the right 2 × 2 cell block (i.e., Keff(2D)(k1(x,z), k2(x,z), k3(x,z), k4(x,z))). The physics-informed 
layer is then followed by three fully connected layers with four neurons each. The last layers’ outputs of both 
modules are then merged together in a concatenated eight-neuron layer. We then use a regression module consist-
ing of two dense fully connected layers with four neurons each to process the extracted deep features with a drop-
out rate of 0.1. The final dense layer consists of only a single neuron with a linear activation function that predicts 
the upscaled permeability of the 300 × 300 × 300 cubic voxel volume in the x direction (i.e., kx) (Figure 7).

We use a regular MARE loss function to train PINN-2

Figure 7. The architecture of physics-informed neural network-2 model consists of a multilayer perceptron module and a 
physics-informed module, both of which have four dense fully connected layers, followed by a concatenation layer and a 
regression module with two dense fully connected layers. The first layer of the physics-informed module consists of four 
physics-informed neurons that calculate the effective permeabilities of the top, bottom, left, and right 2 × 2 cell block 
(Figure 3) using Equation 7.
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loss =
| 𝑘𝑘data − 𝑘𝑘predicted |

𝑘𝑘data

, (11)

where kdata corresponds to the true effective permeabilities, and kpredicted corresponds to the effective permeabil-
ities predicted by PINN-2. This approach allows the PINN-2 to automatically find, through model training, the 
latent relationship between the upper, lower, left, and right 2D halves of the 2 × 2 × 2 cell blocks.

The PINN models are relatively small—PINN-1 has 425 trainable parameters, while PINN-2 has 285 train-
able parameters. We train the models using the open-source software interface Keras 2.4.0 and TensorFlow 
2.3.1 on NVIDIA GeForce RTX 2080 Ti GPUs. The use of GPUs enables parallel computing that drastically 
decreases training time and allows the model to scale with more resources (Owens et  al.,  2008). The Adam 
optimizer, a computationally efficient extension of adaptive stochastic gradient descent, is utilized for training 
(Kingma & Ba, 2015). We execute the training process for 100 epochs and store the parameters produced by the 
best-performing epoch.

3. Results and Discussion
We evaluate the accuracy of the upscaling models using the testing data set, which consists of 3,040 150 × 150 × 150 
cubic voxel sub-volumes and their respective 380 300 × 300 × 300 cubic voxel volumes of multiple rock types. 
Specifically, we feed the PINN models with the labeled permeability values of the eight 150 × 150 × 150 cubic voxel 
subvolumes that make up every 300 × 300 × 300 cubic voxel volume in the testing data set. The prediction accuracy 
is quantified by the relative error RE = (kpred − ktrue)/ktrue and the absolute relative error (ARE) = |RE|, where kpred 
refers to the upscaled permeability predicted by either the PINN models or the analytical solution, and ktrue is the 
permeability values obtained from direct numerical simulation using OpenFOAM®. To avoid the potentially dispro-
portionate influence of outliers, we provide the accuracy only for predictions with AREs within the 95th percentile.

We begin by assessing the accuracy of the analytical solution (Equation 8) in approximating the upscaled perme-
ability of the testing data set. We find that the analytical solution tends to significantly under-predict the upscaled 
permeability of the larger volumes with some highly inaccurate predictions compared to the true permeabilities 
(Figure 8a). The analytical solution has a MARE = 0.1542, and it has a wide ARE distribution (|RE| ∈ [0, 0.5]; 
Figure 8a). We then assess the accuracy of PINN-1, which is embedded with a physics-informed loss function. We 
find that the predictions of PINN-1 closely match the true permeabilities over a wide range of permeability values 
(Figure 8c), though it slightly under-predicts the true permeability. The ARE distribution of PINN-1 reveals that 
the majority of model predictions are in the low error region (Figure 8d). Additionally, the predictions of PINN-1 
have MARE = 0.102, which is significantly lower than that of the analytical solution. Finally, we assess the accu-
racy of PINN-2, which is embedded with the analytical solution through a physics-informed architecture. We find 
PINN-2 outperforms both the analytical solution and PINN-1 by achieving a MARE = 0.090. Moreover, PINN-2 
delivers balanced predictions over a large range of permeability values (Figure 8c). The superior performance of 
PINN-2 is attributed to the inductive bias incorporated into the network architecture through the introduction of 
the analytical solution.

In addition to achieving low error on the testing data set, generalizability is another key metric in evaluating 
machine learning models. In this context, generalizability is defined as a model’s ability to make reasonable 
predictions when applied to data sets that were not used in the training process (LeCun et al., 2015). Furthermore, 
we test the model's predictive capability after multiple levels of upscaling. Specifically, we compile a new testing 
data set comprising of 45 previously unseen 600 × 600 × 600 cubic voxel volumes and their respective 2,880 
150 × 150 × 150 subvolumes for the three rock types (i.e., Berea sandstone, Bentheimer sandstone, and Ketton 
limestone). The permeabilities of the 150 × 150 × 150 subvolumes are predicted by the 3D CNN model introduced 
by Elmorsy et al. (2022). The first level of upscaling involves using every eight neighboring 150 × 150 × 150 
cubic voxel subvolumes of the testing data set to predict the permeability of the 300 × 300 × 300 cubic voxel 
subvolumes that encompass them (Figures 9a and 9b). The second level of upscaling uses the predicted perme-
abilities of the 300 × 300 × 300 cubic voxel subvolumes to yield the permeability of the 600 × 600 × 600 cubic 
voxel volume (Figures 9b and 9c).

We find that the additional level of upscaling exacerbates the under-prediction error of PINN-1, and its predic-
tions have a MARE = 0.158 (Figure 10a). In contrast, PINN-2 produces highly accurate and balanced predictions 
after two levels of upscaling over a wide range of permeability values, and its predictions have a much lower 
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MARE = 0.062 compared to PINN-1 (Figure 10b). Interestingly, the predictions of PINN-2 are more accurate 
after two levels of upscaling compared to after just one level of upscaling. Our framework allows for additional 
levels of upscaling, though we could not demonstrate its accuracy after further upscaling due to the limited avail-
ability of larger micro-CT scans and the high computational demand associated with obtaining the true permea-
bilities of larger samples for comparison.

We note that while direct numerical simulation on a large sample domain is feasible with the advancement in 
computing power and novel algorithms such as the hybrid multiscale finite volume method (Barajas-Solano & 

Figure 8. Effective permeability prediction of the 300 × 300 × 300 cubic voxel volumes by upscaling 2 × 2 × 2 anisotropic 
subvolumes of size 150 × 150 × 150 cubic voxels using (a, b) the approximate analytical solution (Equation 8), (c, d) 
physics-informed neural network-1 (PINN-1) and (e, f) PINN-2. (left column) While the approximate analytical solution 
significantly under-predicts the true permeabilities obtained from direct numerical simulation, both PINN-1 and PINN-2 
achieve excellent accuracy for both the training data set (gray circles) and the testing data set (green circles). The black 
dashed line represents perfect agreement between the predicted permeability and the true permeability. (right column) The 
absolute relative error (ARE) of the approximate analytical solution has a wide distribution, while the ARE distributions for 
both PINNs are much narrower, with the vast majority of the model predictions clustered in the low error range. The vertical 
blue dashed line and the red dashed line illustrate the median ARE and the mean absolute relative error, respectively.
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Tartakovsky, 2016), they nevertheless remain computationally expensive. For example, solving for the permeability 
of a single 600 × 600 × 600 cubic voxel volume using OpenFOAM® takes over a day on a server cluster using 
32 cores of 3.20 GHz CPUs (∼1 sample/day). In contrast, permeability prediction of each 150 × 150 × 150 cubic 
voxel subvolume using the 3D CNN model (Elmorsy et al., 2022) takes less than 5 ms (∼200 samples/second) on 
a computational cluster with seven GPUs, while both PINN models execute two levels of upscaling to achieve the 
permeability of the 600 × 600 × 600 cubic voxel volume in less than 400 milliseconds (∼2.5 samples/second) on 
a single 3.20 GHz CPU. Therefore, the machine learning framework presented here enables permeability predic-
tion of large digital porous media that is substantially more efficient compared to direct numerical simulation.

Figure 9. Schematic of multiple levels of upscaling by recursively applying the physics-informed neural network models.

Figure 10. Effective permeability prediction of the 600 × 600 × 600 cubic voxel subvolumes by (a) physics-informed neural 
network-1 (PINN-1) and (b) PINN-2 after two levels of upscaling. Left column: While PINN-1 significantly under-predicts 
the true permeabilities, PINN-2 achieves accurate and balanced predictions over a large range of permeability values. The 
black dashed line represents perfect agreement between the predicted permeability and the true permeability, while the red 
dashed lines represent the boundaries of a 25% mean absolute relative error (MARE) range. Right column: The absolute 
relative errors (AREs) of predictions produced by PINN-1 are centered around 15%. The AREs of PINN-2’s predictions are 
much lower, and they are clustered around 5%. The vertical blue dashed line and the green dashed line illustrate the median 
ARE and the MARE, respectively.

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035064 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [28/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

ELMORSY ET AL.

10.1029/2023WR035064

15 of 17

4. Conclusions
We have developed three upscaling models for predicting the effective permeability of large digital rock samples 
based on their smaller constituents. Specifically, we derive a novel analytical solution that approximates the effective 
permeability of a 3D porous medium consisting of 2 × 2 × 2 anisotropic subvolumes (Equation 8). The analytical 
solution is based on the physical analogy between Darcy’s law and Ohm’s law, which allows us to find the upscaled 
permeability by building an equivalent circuit resistor network. In addition, we incorporate the analytical solution 
into two types of PINN models, where the first model (PINN-1) utilizes a physics-informed loss function (Figure 6), 
and the second model (PINN-2) encompasses a physics-informed module directly in its architecture (Figure 7).

To assess the accuracy of the upscaling models, we compile a large and diverse input data set of 38,400 
150 × 150 × 150 cubic voxel subvolumes and a target data set of 4,800 300 × 300 × 300 cubic voxel volumes taken 
from CT scans of different rock types including Bentheimer sandstone, Berea sandstone, and Ketton limestone. 
The input data set contains a significant portion of highly anisotropic subvolumes (Figure 1) with permeabilities 
ranging from 1,000 to 5,000 mD (Figures 2a and 2b). We further conduct data augmentation to enlarge the data 
set size (Figure 2c) and data balancing to minimize the data set distribution bias (Figure 2d). Both PINN models 
achieve superior accuracy compared to the analytical solution (Figure  8). Specifically, PINN-1 and PINN-2 
achieve MARE = 0.102 and MARE = 0.090, respectively, while the analytical solution yields MARE = 0.15. We 
further test the capability of the models by applying them to predict the effective permeability of previously unseen 
600 × 600 × 600 cubic voxel volumes based on 150 × 150 × 150 cubic voxel subvolumes (i.e., two levels of upscal-
ing), where the permeabilities of the 150 × 150 × 150 cubic voxel subvolumes are predicted by the 3D CNN model 
previously developed by the authors. We find that the additional level of upscaling decreases the accuracy of both 
the analytical solution and PINN-1, while PINN-2 increases its prediction accuracy and achieves MARE = 0.062 
after two levels of upscaling (Figure 10). In addition to its accuracy, a key advantage of this framework (i.e., 3D 
CNN coupled with PINN) is its computational efficiency, since it does not involve any direct numerical simulation.

Recent developments in machine learning methods such as 3D CNN have proven to be important tools in predict-
ing the permeability of digital rock samples. However, existing 3D CNNs are limited in the size of the sample that 
they can predict, which are typically much smaller than the micro-CT image of the rock sample. The PINN devel-
oped here (PINN-2) enables accurate and efficient upscaling to predict the effective permeability of large digital 
rock samples from their smaller constituents. Together with advances in X-ray micro-CT technologies that can 
accommodate larger samples, our work paves the way for real time, end-to-end digital rock characterization at the 
core-scale, a step that will propel tackling key grand challenges pertaining to the sustainable extraction of hydrocar-
bons, permanent geological sequestration of carbon dioxide, and seasonal storage of renewable energy underground.

Data Availability Statement
The freely accessible data from the Imperial College London online repository portal (Bijeljic & Raeini, 2015) 
were used in the creation of this article. Numerical simulations of the 3D porous media samples were conducted 
using OpenFOAM®, which is an open-source set of solvers for CFD simulations (Horgue et  al.,  2015). The 
analytical solutions are developed using the symbolic computation solver SymPy 1.10.1 in Python 3.9.12. We 
train the machine learning model using the open-source software interface Keras 2.4.0 and TensorFlow 2.3.1 on 
NVIDIA GeForce RTX 2080 Ti GPUs. Figures were made with Matplotlib 3.5.1, available under the Matplotlib 
license at https://matplotlib.org/. Part of the software (v.1.1) associated with this article for data processing and 
machine learning model is publicly available on GitHub https://github.com/elmorsym1 and published on Zenodo, 
a general-purpose open-access repository (Elmorsy, 2023).
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