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1 Introduction

Subsurface porous media characterization is important in many natural and indus-
trial processes such as groundwater movement, oil extraction, and geologic CO2

sequestration. Classifying the type of porous media (e.g., sandstone, carbonate) is
often the first step in the characterization process, and it provides critical informa-
tion regarding the physical properties of the porous media. Conventionally, trained
experts classify subsurface porous media samples via laboratory analyses [22]. More
recently, advances in remote sensing technologies such as laser-induced breakdown
spectroscopy (LIBS) have made in-situ characterization of porous media possible,
whereas computed micro-tomography (µCT) technologies have made characteriza-
tion of porous media samples much more efficient [4, 14]. For example, modern
desktop X-ray µCT machines are capable of scanning a rock sample in as little as
a few minutes. As a result, we now have unprecedented access to three-dimensional
(3D) visualizations of various subsurface materials, which are readily available in
online repositories [15].

Digital classification of porous media samples is now possible via the combina-
tion of imaging, chemical analysis and multivariate statistical methods. Multivariate
statisticalmethods analyze the common behaviour ofmultiple independent variables,
and they include principal component analysis (PCA), soft independent modeling of
class analogy (SIMCA), and partial least squares discriminant analysis (PLS-DA).
They have been utilized to analyze and classify porous media samples based on their
chemical composition, textural features, pore characteristics, and physical properties.
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Multivariate statistical method based classification make in-situ classification of
porous media possible, in situations where sample collection and retrieval is exorbi-
tantly expensive or infeasible. For example, Sirven et al. [17] studied the feasibility
of remotely identifying rocks on the Martian surface, using LIBS spectra data and
multivariate methods including PCA, SIMCA, and PLS-DA. Their results show that
SIMCA outperforms PLS-DA in discriminating materials that share similar features,
however, combination of both models achieves the highest classification rate (97%).
Kim et al. [9] used PCA and PLS-DAmethods to classify three types of soil samples
based on LIBS spectral data. Guang et al. [6] classified different rocks and soils
using PLS-DAand support vectormachine (SVM) algorithms based onLIBS spectra.
Similarly, Xie et al. [22] used PLS-DA for soil type identification using near-infrared
(NIR) spectra. Lepistö et al. [11], and Kachanubal and Udomhunsakul [8] utilized
neural networks to categorize rocks into homogeneous and non-homogenous groups
based on their color and textural features using RGB images. Valentín et al. [19] used
Naïve Bayes classifier to classify rock textures based on 31 different combinations
of 520 textural and spectral features. In order to reduce the computational cost of the
classification process, they used PCA to reduce the problem dimensionality followed
by a genetic algorithm to define the most statistically significant input configuration.

While LIBS spectra-based analysis has shown success in classifying rocks and
soils based on their chemical composition [6], LIBS cannot provide precise informa-
tion about the inner domain structure. µCT scans capture 3D information of porous
media’s inner structure with micron-scale precision, enabling precise characteriza-
tion at the pore-scale. Adhikari et al. [1] studied the variability of CT-measured pore
characteristics and physical properties of three soil samples obtained from different
locations. The CT-measured pore characteristics are macroporosity, mesoporosity,
number of pores, circularity and fractal dimension, while the soil physical properties
are bulk density, hydraulic conductivity, sand, silt and clay content. They employed
PCA to perform a redundancy analysis that reduced pore features, and soil phys-
ical properties into three principal components. Their analysis shows that the soil
porosity and the sample number of pores are the most governing characteristics in
constructing the principle components.

Here, we present a fast and robust data-driven model for rock classification using
3D µCT images. We find OPLS is the most efficient at extracting latent variables
of domain features (e.g., porosity, convexity, etc.) from µCT images compared to
other commonly usedmethods such as PCA, SIMCA, and PLS. In addition, our work
provides quantitative insights into the homogeneity of the rock sample, and uncovers
the relative influence between different domain features in rock classification, which
improves our understanding of rock formation and evolution.
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Fig. 1 3D visualization of µCT scans of a synthetic rock, b sandstone, and c limestone

2 Data

2.1 Description

The µCT imaging dataset used in our analysis is obtained from Muljadi et al. [13]
and it is accessible via the digital rock portal [15]. Specifically, the dataset contains
a 15003 µm3 sandstone sample (3 µm/pixel), a 16553 µm3 limestone sample (3.31
µm/pixel), and a 10003 µm3 synthetic rock sample (2 µm/pixel) (Fig. 1). The
synthetic rock was stochastically generated such that the pore bodies are spher-
ical. The synthetic rock sample has homogeneous pore sizes in all spatial directions,
while the sandstone and limestone samples have spatially heterogeneous pore sizes
and irregular pore shapes.

2.2 Pre-processing and Feature Visualization

We perform pre-processing of the data by slicing the segmented 3D µCT scans
and obtaining 500 sequential, equally-spaced 2D binary images for each sample
dataset (Fig. 2). We then transform the 2D binary images of the porous media to
extract the contours of the void space. The contours are used to calculate different
geometric features including perimeter, area, porosity, convexity, moments, etc.
(Fig. 3). Convexity is the ratio between the contour area and its convex hull area,
where a convex hull of a contour is the minimum perimeter that contains the contour
(e.g. a convex contour will have a convexity ratio = 1, while a concave contour
will have convexity ratio <1). Convex hull descriptor is an important geometrical
feature to detect shapes’ similarities and it has been used for a variety of computer
vision applications [7]. Similarly, moments and functions of moments are common
contour-based shape features used in object recognition [12]. We calculated three
groups of moments, (i) spatial moments: m01, m02, m03, m10, m11, m12, m20,
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Fig. 2 Sequential 2D slices of 3D µCT scans of a synthetic rock, b sandstone, and c limestone.
The void fractions of the porous media are shown in black, while the solid fractions are shown in
white

Fig. 3 We transform the 2D binary images of the porous media to extract the contours of the void
space. We extract different geometric features of the contours including perimeter, area, porosity,
convexity, moments, etc. using the OpenCV library in Python [3]

m21, m30, (Eq. 1), (ii) central moments: mu02, mu03, mu11, mu12, m20, mu21,
mu30, (Eq. 2) and (iii) normalized central moments: nu02, nu03, nu11, nu12, nu20,
nu21 and nu30 (Eq. 3). Their mathematical derivations are defined by,

Spatial moments (mji):

m ji =
∑

x

∑

y

x j yi I (x, y) (1)
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where I(x, y) = contour pixel intensity.
Central moments

(
muji

)
:

mu ji =
∑

x

∑

y

(x − x) j (x − y)i I (x, y) (2)

where x , y are the contour centroid: x = m10
m00

, y = m01
m00

.
Normalized central moments

(
nuji

)
:

nu ji =
mu ji

m(i+ j)/2+1
00

(3)

Then, the slice porosity for each contourwas calculated, and the contour perimeter
to area ratio (P/A). The final multivariate dataset consists of 3000 contours (i.e., 1000
contours for each porous media) and the extracted features. We divide this dataset
into a training set and a testing set, whose sizes have a ratio of 4:1.

We develop a correlation heat map to visualize the correlation matrix between
all rock features and the rock types (Fig. 4). Correlation matrix is a useful tool for
exploratory data analysis, it inform us the degree and direction of correlation between
data variables and their corresponding target. Correlation heat maps transform the
correlation matrix information and present them in a visually appealing format.
The developed correlation heat map shows that porosity and convexity are the most
strongly correlated to the rock type, while area and moments (m01-3, m10-12, m20-
21, m30, mu30, nu02 and nu11) exhibits intermediate correlation to the rock type.
The remaining features (P/A ratio, mu03, mu12, mu20-21, mu30, nu30, nu12 and
nu20-21) have weak correlation to the rock type. This illustrates that not all pore
features have a statistically significant correlation to the rock type.

3 Methodology

We test three multivariate statistical methods—principal component analysis, partial
least squares, and orthogonal partial least squares—to classify porous media samples
using the geometric features extracted from pre-processing of the 3D µCT scans.
We briefly describe each of the methods below.

Principal component analysis (PCA) is a mathematical procedure that reduces the
dimensionality of large datasets by finding linear combinations of large number of
correlated variables to create a smaller number of uncorrelated variables (orthogonal
to each other), known as principal components, while preserving as much variability
as possible [20]. PCA is commonly used as a pre-processing step to reduce dimen-
sionality ofmultivariate data prior to usingmachine learning classification algorithms
[16]. In addition to the PCA popularity as a dimensionality reduction technique, it
is also a useful technique for data visualization and feature discovery [10]. Based
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Fig. 4 Correlation heat map of the correlation matrix between the extracted rock features and
rock types. The color bar displays the correlation coefficient. Dark blue indicates strong positive
correlation, dark red indicates strong negative correlation and white indicates no correlation exists

on the PCA technique, the soft independent modeling of class analogy (SIMCA)
method is used for complex classification tasks where a single PCA model does not
encompass all of the dataset’s variability. SIMCA is collection of PCA models, in
which each class in the dataset has its own PCA model [21]. Here, we first develop
a PCA model for each rock type, by fitting and calculating the scores and loadings
of the model components. Then, we use the developed models to classify porous
media samples in a supervised manner by projecting them onto each PCAmodel and
calculating the corresponding residual. The porous media sample is classified as the
rock type that yields the lowest residual and that is within its statistical limit. Partial
least squares (PLS) is a mathematical method that finds latent variables of dataset
variables and sequentially extracts each component. PLS differs from PCA in that
it uses two blocks of data, X (variables) and Y (target), where X is used to predict
Y, and Y can have multiple variables. PLS maximizes the relationship between X
and Y while explaining the best variability in both X and Y, where scores and load-
ings are calculated for both blocks simultaneously [2]. PLS can handle multi-class
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datasets using one model and it use cross-validation to check the number of compo-
nents. We assign the dummy variable Y to each porous media sample (synthetic
rock = 0, sandstone = 1, limestone = 2) in the training process. Orthogonal PLS
(OPLS) method divides variability in the X block into systematic variability and
residual variability. OPLS further splits systematic variability into two parts—one
part is correlated to the Y block (predictive), while the other part is uncorrelated to Y
(orthogonal). By evaluating the variation explained in each PLS component, OPLS
can filter the systematic variability extracted from the input block but not related
to the Y block. Therefore, an effective model with reduced complexity is obtained
while maintaining the predictability of the model [18]. As a result, usually, one or
two components are enough to represent variation when using the OPLS technique.
By the end, rock features components generated by PLS and OPLS models were
used in conjunction with discriminant analysis. The multivariate data analyses were
carried out using SIMCA® software (Version 16.0, Umetrics).

4 Results

4.1 PCA Analysis

PCA model was developed and R2 and Q2 for each component of the X matrix in
the training set were calculated. R2 is the percentage of the variance explained by
the model. It indicates how well the model fits the data. Q2 is the percentage of the
variance of the training set predicted by the model according to cross validation. By
increasing the number of components, the value of R2 increases for incorporating
more variability, however, the value of Q2 has decreased after the second component.
In fact, Q2 is calculated the same way as R2, but it is applied on validation set
which is not used in fitting the model. Therefore, by increasing more components
and including more variability representing more variables from the data, this leads
to over-fitting due to noise. This shows that weakly correlated moment variables
discussed in the data visualization section contribute negatively to Q2 of the model.
So by adding more components to explain more variability of the X matrix this
weakness the model’s predictive capability since it incorporate more noise. The
highest Q2 was recorded at the first component and equals to 0.31 with R2 equals
to 0.344. Then, the t1-t2 scores plot was developed and it shows good separation
between the synthetic rock, and the two natural rocks, sandstone and limestone;
however the natural rocks scores are totally overlapped (Fig. 5).
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Fig. 5 Scores plot for PCA, PLS and OPLS models. The t1-t2 PCA scores were the most scattered
and have a near complete overlap of the sandstone and limestone scores, making the separation
task between these two rocks difficult; however, it is easier to separate the synthetic rock samples.
Similarly, the PLS t1-t2 scores show similar distribution with narrower ranges and less outliers.
On the other hand, the OPLS t1-t2 scores have a neat separation in the t2 scores dimension, with
few outliers. Finally, the OPLS t1-id plot illustrates two information regarding the homogeneity
of rocks, (i) the synthetic rock has a narrow t1 range for a given rock slice indicating close pore
features values; on the other hand, real rocks t1 scores have a wider range indicating wider pore
features values range on the slice level. (ii) the synthetic rock t1 scores almost stabilize when the
pore depth increases in the X direction; unlike, real rocks t1 scores that shift to the left (negative
direction), indicating change in the features values. This concludes that, the synthetic rock has a
homogeneous pore structure, whilst, real rocks are heterogeneous

4.2 SIMCA Classification Model

We perform supervised classification of porous media samples using an SIMCA
model. SIMCA is collection of PCA models, each fitted for a specific rock type.
In the classification process, we calculate the average orthogonal distance of the
test sample to each model. The orthogonal distance is the Euclidian distance of the
test sample to the PCA model of a given class. If the orthogonal distance of a new
sample was found to be within the class model border (or below its statistical limit)
then the sample belongs to that class, and vice versa. Similarly, to the PCA model,
by increasing the number of components for each class model, we obtain a higher
R2 value, however Q2 value decreases. The best fit models were used to classify
rock samples by using two components for sandstone, limestone and synthetic rock
models. The SIMCA classification recorded accuracy of 96.63% for training set and
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Table 1 SIMCA model classification results on the testing set using two components

Rock type Pores Synthetic rock Sandstone Limestone No class Classification
rate

Synthetic rock 200 189 11 0 0 0.945

Sandstone 200 0 197 1 2 0.985

Limestone 200 0 17 182 1 0.91

Total 600 189 225 183 3 0.9467

94.67% for testing set. When the incorporated PCA components were increased to
three for the three models, the training and testing accuracies decreased to 96.17 and
92.83% respectively (Table 1).

4.3 PLS-DA Classification Model

PLS-DA model was developed and it was found that by increasing the incorporated
components, the R2 and Q2 values increases. It was also noted that using two compo-
nents was not enough to have a robust model since the cumulative R2, Q2 values for
the second component were below 0.5, however, by adding the third component, the
cumulative R2 and Q2 values has increased significantly reaching nearly 0.7 for both
of them. Also, the scores of the first and second PLS components recorded overlap
for the sandstone and limestone samples, as displayed Fig. 5. This emphasized that
using only the first two PLS components was not enough for efficient classification.
The classification results also matched that observation, since with using only the
first two PLS components, total training and testing accuracies recorded 68.63 and
70.5%, respectively, with significant low limestone classification accuracies equals to
29.25 and 34% for the training and testing samples respectively. To further increase
the classification accuracies, seven PLS components had to be used to achieve a
strong classification, recording training and testing accuracies equals to 98.17 and
98% respectively (Tables 2 and 3).

Table 2 PLS-DA model classification results on the testing set using the first two components

Rock type Pores Synthetic rock Sandstone Limestone No class Classification
rate

Synthetic rock 200 200 0 0 0 1

Sandstone 200 1 155 44 0 0.775

Limestone 200 2 130 68 0 0.34

Total 600 203 285 112 0 0.705
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Table 3 PLS-DA model classification results on the testing set using the first seven components

Rock type Pores Synthetic rock Sandstone Limestone No class Classification
rate

Synthetic rock 200 200 0 0 0 1

Sandstone 200 1 197 2 0 0.985

Limestone 200 0 9 191 0 0.955

Total 600 201 206 193 0 0.98

4.4 OPLS-DA Classification Model

Finally, we developed an OPLS-DA model that achieved cumulative R2 and Q2

equal to 0.846 and 0.839 respectively, by using only two components. In addition,
the first two components had a cumulative R2

(X) equal to only 0.163, however their
contribution to R2

(Y) (Predictive—Y) is equal to 1. This means that only 16.3% of
variance in X matrix (rock features) was enough to predict 100% of Y (rock types),
and the remaining variance was orthogonal to Y. The first component contributed to
100% of the synthetic rock samples’ variance, and below 50% for the sandstone and
limestone variance. However, the second component contributed only to explain the
most variability in the sandstone and limestone samples. The scores of the first and
second components are plotted in Fig. 5, and they showed strong separating capa-
bility. The first component could strongly separate between the synthetic rock, and
the other two real rock samples, while the second component could separate between
the sandstone and limestone samples. The discriminant analysis classification results
recorded accuracies of 97.96% and 97.17% on the training and testing sets respec-
tively, outperforming SIMCA and PLS-DA models when using only two principal
components. In order to study the homogeneity of the samples, the t1 scores that
represent the highest X variance (pore features) that is predictive to Y (rock types)
were plotted versus the contours id, where they are indexed according to their depth
order in the X direction in each rock sample. It was noted that synthetic rock pores
have smaller variation range of t1 scores, and they do not change significantly with
changing the pore location. This means all the synthetic rock pores have similar char-
acteristics and hence it is a homogenous sample. On the contrary, the sandstone and
the limestone had a wider variation range of t1 scores and display a shift in t1 scores
as the contours depth increases. This means that the characteristics of the sandstone
and limestone samples pores change in the three spatial directions, and thus they
are heterogeneous. Similar patterns were also found in the t2 scores values. These
findings agree with our observations from visualizing the samples’ slices in Fig. 2,
but using t1 and t2 scores enables analyzing rock homogeneity in a quantitative way
(Table 4).

Finally, we investigated the variables influence in predicting the rock types by
utilizing the variable influence in projection (VIP) method. VIP method evaluate
the influence of each variable in the projection used in the model by calculating
VIP scores that is often used for variable selection in multivariate analysis for big
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Table 4 OPLS-DA model classification results on the testing set using the first two components

Rock type Pores Synthetic rock Sandstone Limestone No class Classification
rate

Synthetic rock 200 200 0 0 0 1

Sandstone 200 1 195 4 0 0.975

Limestone 200 0 12 188 0 0.94

Total 600 201 207 192 0 0.9717

Fig. 6 Variable influence in projection (VIP)

data. Variables with higher VIP scores indicate higher influence in the projection in
the model and consequently higher influence in predicting the class of a new data.
Specifically, a variable with a VIP Score close to or greater than one (> = 1) can be
considered influential in a given model, on the contrary, variables with VIP scores
substantially less than one (<1) are less influential and might be discarded from the
model. For more details about the VIP theory, the reader can refer to [5]. Here we
developed the rocks variables VIP scores for the predictive components in the OPLS
model, and we illustrate them in Fig. 6. It is illustrated that porosity and convexity
have the highest influence on the model with VIP scores greater than 2.5 (>2.5),
relatively, less influential variables are nu11 moment and P/A ratio with VIP scores
greater than 1.5 (>1.5), and nu02moment, area andmu02momentwith scores greater
than one (>1). The remaining variables are found to be insignificant to the model
projection by having VIP scores less than one (<1).

5 Conclusions

In this paper, we carried out a classification analysis over digital rocks dataset,
including a synthetic rock and two natural rocks, sandstone and limestone. The digital
rocks volumes were sliced in the X direction, and their pore structure contours were
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extracted, followed by calculating handcrafted features out of them. We employed
four data reductionmethods to performmultivariate statistical analysis, namely PCA,
SIMCA, PLS-DA and OPLS-DA. The PCA model showed a poor capability to
explain the whole dataset in one single model. On the other hand, the SIMCAmodel
demonstrated higher prediction capability by building a single PCA model for each
rock type. We found the PLS model to be more capable of dealing with the analyzed
dataset because of its ability to deal with noise and uncorrelated variables to the
sample class. However, its t1-t2 plot showed that the first 2 PLS components were
not enough to separate rock samples effectively. On the other hand, the OPLSmethod
effectively filtered the variables that did not correlate to the sample class. It resulted
in only two components that predicted 100% of the Y matrix (rock type) while
explaining only 16.3% of the Xmatrix (rock features) variance. The t1-t2 scores plot
of the OPLS model showed a near clear separation between all rock types with few
outliers. That emphasized the OPLS capability in filtering the uncorrelated variables
to the classified classes, and consequently, it uses less informationwith higher predic-
tion ability. Therefore, the OPLS-DA model achieved the highest classification rate
equals to 0.9717 when using only 2 components. Finally, we utilized the VIPmethod
to uncover the most influential rock features in classifying rock types. Variables such
as porosity, convexity, P/A ratio, nu02 and nu11 moments were revealed to be the
key features to distinguish rock types.
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