
1. Introduction
Subsurface fluid flow is critical in many natural and industrial processes such as groundwater movement 
(Bear, 2013; Freeze & Cherry, 1979), energy extraction (Lake, 1989; Orr & Taber, 1984), and geological carbon 
sequestration (Juanes et al., 2010; Szulczewski et al., 2012). Over geological times, the Earth's subsurface evolved 
to encompass a wide variety of different rock and soil types, which are characterized by vastly different physical 
and chemical properties (Tarbuck et al., 2005). In particular, permeability—A property that measures the ease 
with which fluids pass through a porous medium—Exerts fundamental control over fluid flow in the subsurface. 
In contrast to the wealth of information on the Earth's surface, our knowledge of the subsurface is coarse, limited 
and often inaccurate. This is in large part due to the time-consuming and expensive nature of traditional methods 
for characterizing porous media.

For decades, characterization of subsurface properties have relied on the retrieval and analysis of core samples via 
underground drilling. Despite the advent of seismic surveys in the past decades, drilling remains the most reliable 
and accurate way of characterizing the subsurface (Chan & Schmitt, 2015). However, drilling is a highly expen-
sive venture—A single well can cost hundreds of thousands to millions of dollars depending on its depth and 
the surrounding geology (Hossain, 2015). Even after drilling is completed, the characterization of the retrieved 
core samples requires complex and time-consuming laboratory tests using specialized equipment. For example, 
permeability is traditionally measured by flowing a pressurized gas or liquid through a core sample at varying 
flow rates and measuring the resulting pressure drop across the sample (Bear & Bachmat, 1991). This procedure 
limits the re-usability of the core sample for other tests. Additionally, since many geologic media are anisotropic 
in nature, such tests need to be repeated for each principal direction of anisotropy. As a result, there are millions of 
uncharacterized cores and drill-cutting samples that remain dormant in repositories housed by national geologic 
surveys and individual energy and mining corporations across the globe.

Recent advances in imaging technologies such as X-ray micro computed tomography (micro-CT) have allowed 
visualizing the internal structure of opaque porous media in three-dimensions (3D) and characterize their phys-
ical properties digitally via numerical simulations (Andrä et al., 2013a, 2013b; Berg et al., 2017; Ketcham & 
Carlson, 2001; Spanne et al., 1994). This technology, commonly referred to as digital rock analysis, is rapidly 
transforming how rock permeability is determined in both academic and industrial settings (Blunt et al., 2013; 
Mostaghimi et al., 2013). The current benchmark for digital characterization of rock permeability is achieved 
through high-resolution computational fluid dynamics (CFD) simulation of single-phase flow through digital 
rock samples. The permeability is calculated from the imposed pressure drop across the computed flow field 
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within the sample. The most popular computational methods for permeability characterization are lattice/parti-
cle-based models (e.g., lattice Boltzmann method (LBM); Chen & Doolen, 1998; Zhao et al., 2018) and contin-
uum models that directly solve for the Stokes equation on the discretized pore geometry (Bijeljic et al., 2013; 
Guibert et al., 2016; Muljadi et al., 2016). Both methods have been successfully applied to predict the perme-
ability of a variety of rock types including sandstones, limestones, and carbonates (Andrä et al., 2013a; Blunt 
et  al.,  2013; Boek & Venturoli,  2010; Chen & Doolen,  1998; Dong & Blunt,  2009; Manwart et  al.,  2002; 
Mostaghimi et al., 2013). However, direct numerical simulation of flow in 3D porous media remains compu-
tationally expensive, even with the implementation of parallel computing techniques (Blunt et al., 2013; Wang 
et al., 2019). An alternative to direct numerical simulation is pore network modelling (PNM), which models fluid 
flow by idealizing the complex 3D pore geometry as a lattice of pores and throats (Blunt, 2001, 2017). However, 
pore network models are less accurate than direct numerical simulations due to ambiguities involved in network 
extraction algorithms (Dong & Blunt, 2009).

To circumvent the exorbitant computational cost associated with direct numerical simulation while preserving 
accuracy, researchers have started to explore the use of machine learning models in digital permeability charac-
terization (Alpak et al., 2018; Graczyk & Matyka, 2020).

Tian et al. (2020) applied a hybrid machine learning framework that combined genetic algorithm and artificial 
neural network (ANN) to predict the permeability of stochastically generated 3D porous media. Their dataset 
consisted of 1,000 synthetic samples of size 100 × 100 × 100 cubic voxels with absolute permeability that ranged 
from 300 to 1,200 mD. The permeabilities of the synthetic samples were calculated using the LBM. The perme-
abilities calculated from LBM simulations were used as the training data for the hybrid machine learning model, 
which used 14 morphological features (e.g., porosity, tortuosity, pore throat size, etc.) as the input. Their model 
achieved a coefficient of determination R 2 = 0.999 between the predicted permeability and the LBM-calculated 
permeability. However, it should be noted that the study was based on a very small dataset (700 training samples 
and 300 testing samples) with a narrow range of permeability values (Wang et  al.,  2021). In another study, 
Tembely et al. (2020) used a variety of machine learning methods including linear regression, gradient boosting, 
and ANN to predict porous media permeability based on 3D micro-CT images. Their training dataset consisted 
of 400152 × 152 × 175 cubic voxel subsamples with 2 μm/voxel resolution, and 759100 × 100 × 160 cubic voxel 
sub-samples with 0.48 μm/voxel resolution. The permeabilities of the training dataset were obtained from LBM 
simulations, and they range from 100 to 400 mD. The authors concluded that ANN achieved the highest predic-
tion accuracy (R 2 = 0.91).

Among the multitude of machine learning techniques used for digital permeability characterization, CNNs have 
shown particular promise, due in part to the image-based nature of digital rock analysis (Wang et al., 2021). CNN 
is a type of ANN, and it has been developed to solve difficult image-driven pattern recognition tasks (LeCun 
et al., 1989). CNNs consist of multiple convolution layers capable of automatically learning high-level features 
and representations from raw images without the need for hand-crafted features extracted by domain experts 
(Ghosal et al., 2018). CNNs were first developed to process 2D images (2D CNN), but they have recently been 
extended to analyze 3D volumetric imaging data (3D CNN; Huang et al., 2019; Korez et al., 2016; Milletari 
et al., 2016).

Sudakov et  al.  (2019) applied both 2D CNN and 3D CNN, as well as feature-based machine learning meth-
ods such as gradient regression trees and deep neural networks to predict the permeability of a single Berea 
sandstone sample. Their training dataset consisted of 9,261 subsamples of size 100 × 100 × 100 cubic voxels, 
and the permeabilities of the training dataset were obtained from PNM simulations. They found that 3D CNN 
was the most accurate and efficient method. Santos et al. (2020) applied 3D CNN to predict the velocity field 
of single-phase flow through 3D digital rock samples. Their training dataset was based on CT scans of a bead 
pack with porosity that ranged from 0.11 to 0.298, and it consisted of 1,080 subsamples of size 80 × 80 × 80 
cubic voxels. The velocity field of the training dataset were obtained from LBM simulations. In addition to 
the 3D digital rock images, their model used four extracted features as input. The resulting model was used 
to predict the velocity field of single-phase flow through digital rock of varying complexities, which included 
different types of sandstone and limestone samples. The permeability calculated from the predicted velocity 
field yielded relative errors that ranged from 1.06% (Castlegate sandstone) to 27.3% (Bentheimer sandstone). 
Kamrava et al. (2020) trained a 3D CNN model using 500 synthetically generated porous media samples of size 
200 × 200 × 200 cubic voxels. The synthetic samples were stochastic reconstructions of a single sandstone core. 
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The permeabilities of the training dataset were obtained by numerically solving the Stokes equation, and they 
range from 100 to 500 mD. The authors applied the trained CNN to predict the permeability of a Fontainebleau 
sandstone, and the model achieved a prediction accuracy of R 2 = 0.9. Hong and Liu (2020) trained a 3D CNN 
model based on X-ray micro-CT scan of a Coconino sandstone core. The training dataset consisted of 3,158 
subsamples of size 100 × 100 × 100 cubic voxels. The permeabilities of the training dataset were obtained from 
LBM simulations, and they range from 10 to 6,000 mD. While the CNN model achieved a permeability predic-
tion accuracy of R 2 = 0.91 on the same Coconino sandstone sample it was trained on, the prediction accuracy 
dropped to R 2 = 0.69 when the model was applied to a Bentheimer sandstone sample, which indicates a lack of 
model generalizability. Most recently, Alqahtani et al. (2021) trained a 3D CNN model on a much larger dataset, 
which included images of six different sandstone samples and two different carbonate samples. The training 
dataset consisted of ∼25,000 subsamples of size 64 × 64 × 64 cubic voxels, whose permeabilities range from 10 
to 1,800 mD. The permeabilities of the training dataset were obtained using a fast numerical solver that provides 
an approximate solution to the Stokes equation (Chung et al., 2019a). The resulting permeability estimates are 
within 25% difference compared to those obtained from direct numerical simulation. Notably, the trained CNN 
model achieved a prediction accuracy of R 2 = 0.86 when it was applied to images of the Doddington sandstone, 
a rock sample that the model was not exposed to during the training process.

The existing literature clearly demonstrates the promising potential of 3D CNNs in digital rock permeability 
characterization. In particular, many authors have underscored CNN's short prediction time (less than a second) 
as its major advantage compared to traditional CFD simulations (hours to days; Alqahtani et al., 2021; Santos 
et al., 2020; Sudakov et al., 2019). At the same time, the lack of diverse labeled training data has been highlighted 
as a major obstacle in advancing the predictive capability of CNNs (Hong & Liu, 2020; Kamrava et al., 2020). 
Modern CNN architectures consist of a massive number of parameters that can only be properly tuned with a 
large amount of training data (Alzubaidi et al., 2021; Khan et al., 2020). Due to limitations in computational 
resources, current CNN models have either been trained on relatively small datasets consisting of a single rock 
type (Hong & Liu, 2020; Kamrava et al., 2020; Santos et al., 2020), with subsample size of less than or equal 
to 100  ×  100  ×  100 cubic voxels (Alqahtani et  al.,  2021; Hong & Liu,  2020; Santos et  al.,  2020; Sudakov 
et al., 2019), or labeled with permeability values obtained from approximate solutions to the Stokes equation 
(e.g., PNM; Alqahtani et al., 2021; Sudakov et al., 2019).

Here, we introduce a novel 3D CNN model with multi-scale feature aggregation that has been trained with a 
massive dataset consisting of diverse rock types with a broad permeability range. We show that the large dataset 
size, in combination with the model architecture, elevate the model prediction accuracy beyond other existing 3D 
CNN models for permeability prediction. Furthermore, we demonstrate that the model is generalizable, and it is 
capable of predicting the permeability of previously unseen samples with excellent accuracy.

2. Methodology
2.1. Dataset

We use a comprehensive set of 3D images of different rock samples to develop the CNN permeability prediction 
model (Table 1). The images were previously aquired by researchers at Imperial College London with either a 
synchrotron X-ray beamline or a micro-CT scanner. These 3D images have been used to study various pore-scale 
processes of flow and transport in natural porous media (Blunt et al., 2013; Muljadi et al., 2016), and they are 
publicly-available via an online portal (Bijeljic & Raeini, 2015). The 3D images capture the pore spaces of rock 
cubes with sizes ranging from 1.1 to 3 mm and spatial resolutions ranging from 2.7 to 5.3 μm/voxel. We rescale 
the images such that each voxel corresponds to a physical dimension of 3 μm for all samples in our study. We 
validate the rescaling procedure by calculating the porosities of the rescaled samples, which are all within 2% of 
the original sample porosities. After rescaling, we extract subvolumes from the original 3D images by employing 
a sliding cube with size of 150 × 150 × 150 cubic voxels and an overlapping stride of either 25 or 50 voxels 
(Table 1). The size of the subvolumes is limited by the memory capacity of currently available graphics process-
ing units (GPUs). We foresee that the subvolume size of future models to grow as computer hardware specifically 
designed for machine learning continues to improve.

We obtain the permeability of the subvolumes numerically using OpenFoam®, which is an open source platform 
for computational fluid dynamics (CFD) simulations (Horgue et al., 2015). OpenFoam® models incompressible 
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steady-state viscous flow by solving the Navier-Stokes equation. The pressure and velocity of the fluid flow are 
solved iteratively using the semi-implicit method for pressure-linked equations (SIMPLE) algorithm. For each 
subvolume, we simulate water flow along each of the principal axis (i.e., x, y, z). Specifically, we prescribe a 
total pressure drop Δp = 1 Pa across the bounding surfaces that are normal to the flow direction, while the other 
bounding surfaces are prescribed as no-flow boundaries. Solid surfaces in the computational domain are assigned 
the no-slip boundary condition. The simulation yields the steady-state velocity field throughout the entire subvol-
ume. Finally, we compute the volumetric flux Q across the subvolume by integrating the velocities normal to 
the outflow bounding surface (Equation 1a) and use Darcy's law to calculate the absolute permeability k of the 
subvolume (Equation 1b),

𝑄𝑄𝑖𝑖 = ∬ 𝑢𝑢𝑖𝑖𝑑𝑑𝑑𝑑 (1a)

𝑘𝑘𝑖𝑖 =
𝑄𝑄𝑖𝑖𝜇𝜇𝜇𝜇

Δ𝑝𝑝𝑝𝑝
, (1b)

where i = x, y, z are the principal axes, μ is the dynamic viscosity of water, L is the length of the subvolume, and 
A is the area of the bounding surface.

We have compiled a dataset of over 57,500 subvolumes with labeled permeabilities obtained from direct numeri-
cal simulation. We perform data augmentation on the subvolumes to further increase the size of our dataset. Data 
augmentation using basic image manipulations such as flipping and rotation is a common practice in deep learn-
ing that has proven to be effective on datasets such as CIFAR-10 and ImageNet (Shorten & Khoshgoftaar, 2019). 
Here, we flip the constituent 2D image slices of each 3D subvolume horizontally and vertically to achieve 4 
distinct subvolumes with the same permeability value. Then, we reverse the ordering of the consituent 2D image 
slices to achieve 4 more distinct subvolumes with the same permeability value (Figures 1 and 2). In total, data 
augmentation increases the size of the original dataset to include 460,000 distinct subvolumes with 57,500 unique 
permeability values.

The permeability values of our dataset range from 0 mD to over 20,000 mD, with a positively skewed distribution 
characterized by a long tail in the region corresponding to high permeabillity subvolumes (Figure 3a). While 
distributions of natural processes are typically skewed (e.g., precipitation, earthquake, etc.), such unbalanced 
datasets pose particular challenges for machine learning models. Specifically, machine learning models trained 
with highly unbalanced datasets tend to treat the tail region of the distribution as outliers and produce biased 
predictions that correspond to the most common values in the training data (Bauder & Khoshgoftaar,  2018; 
Johnson & Khoshgoftaar, 2019; Olson, 2004). As a result, it is very difficult for machine learning models to learn 
correctly from unbalanced datasets (Bauder et al., 2018; Bauder & Khoshgoftaar, 2018). Here, we employ the 
under-sampling technique to achieve a balanced dataset (Torgo et al., 2015; Fernández et al., 2018)—We first 
divide the augmented dataset into bins that each encompasses a permeability interval of 100 mD, then randomly 
sample ∼700 subvolumes from each bin. Finally, we arrive at an evenly-distributed dataset with permeability 
values that range from 200 to 9,600 mD (Figure 3b), where the upper limit corresponds to the point beyond 
which the number of subvolumes is not sufficient. We further characterize the balanced dataset by the porosity 

Size Resolution Porosity Stride Number of subvolumes Number of labeled permeabilies

Rock Type [mm] [μm/voxel] [−] [voxel] [−] [−]

Bentheimer sandstone 3 3 0.22 50 5,096 15,288

Ketton limestone 3 3 0.13 50 4,042 12,126

Berea sandstone 2.1 5.3 0.19 25 5,387 16,161

Estaillades limestone 3.3 3.3 0.13 50 2,500 3,564

Doddington sandstone 2.7 2.7 0.19 50 2,562 7,686

Carbonate A 1.1 2.8 0.23 50 770 2,310

Carbonate B 2.1 5.3 0.16 50 402 1,206

Table 1 
Digital Rock Samples Used to Develop the CNN Permeability Prediction Model
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and permeability anisotropy of the subvolumes (Figures 3c and 3d). We measure permeability anisotropy by the 
anisotropy index Ia, which is a three-dimensional estimate of the deviation from isotropy (Clavaud et al., 2008).

𝑘𝑘iso = (𝑘𝑘min𝑘𝑘int𝑘𝑘max)

1

3 , (2a)

𝐼𝐼𝑎𝑎 =

[

(𝑘𝑘min − 𝑘𝑘iso)
2
+ (𝑘𝑘int − 𝑘𝑘iso)

2
+ (𝑘𝑘max − 𝑘𝑘iso)

2

𝑘𝑘2

min
+ 𝑘𝑘2

int
+ 𝑘𝑘2

max

]
1

2

, (2b)

Figure 1. Dataset generation workflow. (a) We obtain three-dimensional micro computed tomography images of rock 
samples from the open source repository hosted by Imperial College London (Bijeljic & Raeini, 2015). The samples are 
rescaled such that each voxel corresponds to 3 μm in physical dimension. (b) We employ a sliding cube across the original 
sample to obtain subvolumes of size 150 × 150 × 150 cubic voxels. (c) We numerically simulate water flow through each 
subvolume by prescribing pressure boundary conditions at the two bounding surfaces normal to one of the principal axes (i.e., 
x, y, z), while imposing no-flow boundary conditions at the other bounding surfaces. We integrate the velocities normal to 
the outflow bounding surface to obtain the total volumetric flux across the subvolume, and calculate its permeability using 
Darcy's law (Equation 1).

Figure 2. Data augmentation. (a) For each three-dimensional (3D)subvolume, we flip the constituent 2D image slices 
horizontally and vertically to achieve four distinct subvolumes with the same permeability value. The capital letter R on the 
face of the subvolume aids visualizing the flipping transformations. (b) For each 3D subvolume in (a), we reverse the order of 
the consituent 2D image slices to achieve four more distinct subvolumes with the same permeability value.

R

R R

(a) (b)

R
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where kmin, kint and kmax are the minimum, intermediate and maximum permeabilities, respectively, for a given 
subvolume. In the context of geologic porous media, rock samples with Ia  <  0.15 are considered relatively 
isotropic, while rock samples with Ia > 0.4 are considered highly anisotropic (Clavaud et al., 2008). Our data-
set covers a wide spectrum of Ia values, and it includes a significant portion of highly anisotropic subvolumes 
(Figure 3d). This is significant to ensure the generalizability of the model and that it is not limited to predict 
permeability of isotropic and homogeneous rock samples.

We randomly divide the balanced dataset of 65,250 subvolumes with labeled permeabilities into testing and train-
ing datasets, with a 20–80 split. The training dataset is further divided into validation and training subsets with 
the same split ratio during the network training process.

2.2. Deep Learning Model Architecture

Convolutional neural networks (CNNs) are a class of machine learning methods specifically designed to analyze 
visual imagery (Valueva et al., 2020). CNNs are widely used in applications including handwriting classification 

Figure 3. Dataset distributions. (a) Permeability distribution of the augmented dataset resembles a log-normal distribution, with a long tail in the region corresponding 
to high permeabillity values. (b) We randomly sample ∼700 subvolumes for each 100 mD interval from the augmented dataset in the range between 200 and 9,600 mD 
to construct a balanced dataset. (c) The porosity of the balanced dataset ranges from 0.046 to 0.492. (d) The anisotropy index of the balanced dataset ranges from ∼0 
(i.e., isotropic) to ∼1 (i.e., extremely anisotropic).
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(Cireşan et al., 2010, 2011), facial recognition (Taigman et al., 2014), self-driv-
ing (Bojarski et al., 2016), material defect detection (Cha et al., 2017), and 
disease diagnosis (Esteva et al., 2017). The vast majority of existing CNNs 
are developed to perform classification tasks, whose output is a discrete set 
of categories. In contrast, the use of CNNs to perform regression tasks that 
predict continuous output variables is more challenging and still in its infancy. 
For instance, it was not until late 2020 when the first comprehensive analysis 
of deep regression techniques was published (Lathuiliere et  al.,  2020). In 
addition, while the application of CNNs on 2D images have become routine, 
their application on 3D volumetric images remain a considerable computa-
tional challenge (Maturana & Scherer, 2015). In our present work, training 
a 3D CNN with >50, 000 subvolumes of 150 × 150 × 150 cubic voxels in 
size requires over 500 GB of memory, which exceeds the memory capacity 
of most existing GPU servers. To maintain the dataset size while ensuring 
computational feasibility, we downscale each subvolume to 100 × 100 × 100 
cubic voxels before feeding it to the machine learning model.

We develop a CNN model that takes 3D volumetric images as the input and 
predicts the permeability as the output. This approach is typically referred 
to as end-to-end learning, since it does not require the explicit calculation 
of hand-crafted geometric features (e.g., maximum inscribed sphere of the 
pore spaces) as an intermediate step (Santos et al., 2020). Traditional CNN 
models (e.g., LeNet, AlexNet) consist of sequentially stacked convolutional 
layers of fixed kernel size at each level (Lecun et  al.,  1998; Krizhevsky 
et  al.,  2012), and that a deeper network (i.e., more layers/levels) typically 
leads to more accurate predictions (Simonyan & Zisserman, 2015). However, 
very deep CNNs are computationally expensive and prone to overfitting 
(Li et al., 2019). Overfitting is characterized by much more accurate model 
predictions on the training set compared to the testing set, and it is a common 
problem in machine learning applications (Srivastava et al., 2014). Models 
with a relatively small training dataset and a large number of parameters can 
effectively “memorize” the training dataset (Ying, 2019). To minimize over-
fitting, we adopt the following regularization techniques in our CNN model 
architecture (Figure 4): (a) increase the dataset size via data augmentation 
(Shorten & Khoshgoftaar,  2019); (b) reduce the number of parameters by 
downsampling feature maps (Wu & Gu,  2015); (c) drop units and neuron 
connections randomly during training at a given probability (i.e., dropout 
rate; Srivastava et  al.,  2014); (d) stop the training process early, when the 
validation error stops decreasing (Ying, 2019). In addition to regularizing a 
neural network, adding non-linearity to it is equally important. Since convo-
lution and pooling layers are linear operations, the output will always be 
a linear transformation of the input regardless of how deep the network is 
(Li et al., 2019). We apply a rectified linear unit (ReLU) as the activation 
function (Figure 4), which introduces non-linearity while minimizing added 
computational cost (Alzubaidi et al., 2021).

For the convolution layers, where a fixed kernel size is commonly used, it is often difficult to determine the opti-
mal kernel size for images whose salient features have large variations in size (Sun et al., 2019). This challenge 
is particularly relevant to natural porous media, whose pore sizes vary greatly even in a millimeter scale sample. 
While large pores contain most of the pore volume of the sample, small pores exert fundamental control over 
the permeability. In addition, characteristic pore sizes vary greatly between different rock types. To effectively 
capture the disparate length scales present in natural porous media, our CNN model incorporates an inception 
module (Figure 4), which processes convolutional layers of different kernel sizes in parallel at the same level 
(Szegedy et al., 2015). Specifically, our inception module consists of two parallel paths of convolutional layers 
with kernel sizes of 7 × 7 × 7 cubic voxels (small pore features) and 15 × 15 × 15 cubic voxels (large pore 

Figure 4. The architecture of our three-dimensional CNN model consists of 
an inception module with two parallel paths of convolutional layers of different 
kernel sizes, a deep learning module with two sequential convolutional layers, 
and a regression module with two dense fully-connected layers.
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features). The resulting feature maps of the two convolution layers from the inception module are concatenated, 
and passed through a convolution layer with a stride of 2 voxels. The purpose of this additional convolution layer 
is to reduce the number of network parameters, accelerate the training process and prevent over-fitting, and it 
is similar to the use of pooling layers (e.g., maximum pooling, average pooling) in most modern CNN models 
(Alzubaidi et al., 2021; Springenberg et al., 2014).

After the inception module, we apply another module of two sequential convolutional layers with kernel size of 
5 × 5 × 5 cubic voxels to extract even deeper features, and to double the number of output filters to 32 (Figure 4). 
We then add a spatial dropout layer with a dropout rate of 0.1 to prevent over-fitting during the training process. 
The final extracted feature map is compressed by a factor of 2 via a convolutional layer and passed to the regres-
sion module (Figure 4). The regression module consists of 2 dense layers of fully connected layers with 128 and 
64 neurons each that process the extracted deep features with a dropout rate of 0.1. The final dense layer consists 
of only one neuron with a linear activation function that outputs the predicted permeability.

The entire CNN model contains a total of ∼2.6 million tunable parameters. We train the model using the open-
source software interface (Keras 2.4.0) and machine learning library (TensorFlow 2.3.1) on a computational 
cluster consisting of 7 graphics cards (NVIDIA GeForce RTX 2080 Ti GPU). The use of GPUs enables parallel 
computing, which significantly reduces the training time and allows the model to scale with additional resources 
(Owens et al., 2008).

The training process is conducted via the Adam optimizer (Kingma & Ba, 2015)—A computationally efficient 
extension to adaptive stochastic gradient descent. The mean absolute percentage error is used as the loss function, 
and all convolution layers are processed with padding and without added bias to the output values. We run the 
training process for 100 epochs and save the parameters yielded by the best-performing epoch.

3. Model Performance
We assess the predictive capability of the CNN model with the testing dataset, which consists of over 13,000 
subvolumes of a variety of rock types (Table  1). The predictions of the CNN model closely match the true 
permeabilities obtained from direct numerical simulation over a wide range of permeability values (Figure 5). 
We quantify the accuracy of the model predictions by calculating the relative error RE = (kpred − ktrue)/ktrue and 
the absolute relative error ARE = |RE|. To eliminate potential oversized impact of outliers, we report the accu-
racy of the model only for predictions whose ARE are within the 95th percentile. The CNN model produces 
balanced predictions over a wide range of permeability values (RE ∈ [−0.32, 0.32]), although it does tend to 
underpredict for permeabilities greater than 7,000 mD (Figures 5b and 6a). We believe the CNN model underes-
timates the permeability of highly-permeable samples as a result of the training dataset's finite permeability range 
(200–9,600 mD). In effect, the CNN model has never encountered samples with permeability greater than 9,600 
mD. Therefore, the model “prefers” to err on the side of underprediction when it encounters a highly-permeable 

Figure 5. The permeabilities predicted by the convolutional neural network model closely match the true permeabilities obtained from direct numerical simulation for 
both (a) the training dataset and (b) the testing dataset. The dashed line represents perfect agreement between the predicted permeability and the true permeability.
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sample. We believe underprediction errors within this range of permeability values can be reduced by extending 
the permeability range of the training dataset.

Furthermore, the model predictions are equally accurate for all 7 rock types in the testing dataset (Figure 6a). 
The ARE distribution shows that the vast majority of the model predictions are clustered in the low error range, 
and the mean absolute relative error MARE = 0.093 (Figure 6b). We additionally calculate the coefficient of 
determination R 2, which measures how well the model predictions approximate the dataset—R 2 = 1 indicates 
perfect agreement between the model and the true permeability. It is a common statistical measure employed by 
other machine learning models for permeability prediction (Chung et al., 2019b; Hong & Liu, 2020; Kamrava 
et al., 2020; Tembely et al., 2021; Table 2). Our CNN model achieves R 2 = 0.95 on the testing dataset.

We attribute the accuracy of our model to (a) the diverse and large training dataset (52,200 subvolumes), (b) the 
novel architecture of the machine learning model, and (c) the use of convolutional layers in place of pooling layers 
in down-sampling operations. To investigate the impact of dataset size on the accuracy of model predictions, we 
train the same CNN model with a series of reduced datasets. The prediction error decreases monotonically as 
training dataset size increases, such that the model trained with 52,200 subvolumes (i.e., full training dataset) is 
80% more accurate than the model trained with the subset containing 10,000 subvolumes (Figure 7a). In general, 
the amount of data required to adequately train a machine learning model increases with the number of trainable 

Figure 6. Prediction capability of the CNN model. (a) The relative error RE of the model predictions is bounded between 
−0.32 and 0.32 over a wide range of permeability values for all rock types: Bentheimer sandstone (blue circle), Ketton 
limestone (red diamond), Berea sandstone (green square), Doddington sandstone (organe hexagram), Estaillades limestone 
(black pentagram), Carbonate A (cyan right-pointing triangle), Carbonate B (yellow left-pointing triangle). (b) The 
distribution of the absolute relative error (ARE) shows that the vast majority of the model predictions are clustered in the low 
error range. The red dashed line and the green dashed line illustrate the median absolute relative error and the mean absolute 
relative error (MARE), respectively.
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parameters and the complexity of the required prediction. In addition to the dataset size, the accuracy of our 
model is enhanced by the inclusion of an inception module consisting of two parallel paths of convolutional layers 
with different kernel sizes (Figure 4), which is more effective at extracting salient features of disparate length 
scales compared to sequential convolutional layers with a single kernel size. Specifically, we find that models 
trained with sequential convolutional layers with a single kernel size produce less accurate predictions compared 
to the model trained with the inception module, regardless of the value of the kernel size (Figure 7b). Finally, the 
accuracy of our model predictions is enhanced by the use of convolutional layers in down-sampling, instead of the 
more commonly-used approach of applying pooling layers. This so-called all-convolutional-net approach better 
preserves useful feature information in the neural network's receptive fields during down-sampling (Springenberg 
et al., 2014). Quantitatively, we find that the use of convolutional layers instead of maximum pooling layers in 
down-sampling contributes to ∼15% and ∼20% reduction in MARE and median ARE, respectively, while all 
other model configurations remain the same.

In addition to having low prediction errors within the testing dataset, generalizability is another important metric 
in assessing machine learning models. In this context, generalizability is defined as a model's ability to produce 
sensible predictions when applied on datasets that have not been used in the training process (LeCun et al., 2015). 
To characterize the generalizability of our model, we apply it to predict the permeability of a new sandstone core 
sample (Bijeljic & Raeini, 2015) previously unseen by the CNN model. The new sample has an average porosity 
of 0.21 with standard deviation of 0.03, an average anisotropy index of 0.38 with standard deviation of 0.18, 
and an average permeability of 4,158 mD with standard deviation of 2285 mD. Our model achieves excellent 
accuracy (MARE = 0.118, R 2 = 0.93) when it is used to predict the permeability of the 2,055 subvolumes of 

Permeability range

  Method [mD] Training set size End-to-End R 2 MARE

Current model 3D CNN 200–9,600 >50k Yes 0.95 0.093

Hong and Liu (2020) 3D CNN 10–6,000 <4k Yes 0.92 N/A

Kamrava et al. (2020) 3D CNN 100–500 >1k Yes 0.91 N/A

Tembely et al. (2021) 3D CNN 70–400 <1k No 0.87 N/A

Alqahtani et al. (2021) 3D CNN 10–1,800 <25k Yes 0.86 0.189

Note. Since the models are tested on different datasets, their accuracy as quantified by the coefficient of determination (R 2) 
and the mean absolute relative error (MARE) are listed for reference only and not for direct comparison.

Table 2 
A Summary of Existing Three-Dimensional (3D) Convolutional Neural Network (CNN) Models for Permeability Prediction

Figure 7. (a) The model prediction error decreases monotonically as the training dataset size increases. (b) The relative error of convolutional neural network models 
trained with sequential convolutional layers is a convex function of the kernel size. The lowest prediction error is achieved in the model with a kernel size of 10 voxels, 
though it is still higher than the prediction error produced by the model equipped with the inception module (dashed lines).
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the external dataset (Figure 8), which is similar to the prediction accuracy 
obtained from the original testing dataset (MARE = 0.093, R 2 = 0.95). We 
attribute the generalizability of the model to the large and diverse dataset and 
the data balancing procedure, which removes bias toward certain ranges of 
permeability values that might otherwise have a high level of occurrence.

The 3D CNN model performs permeability prediction in less than 5 millisec-
onds (i.e., ∼200 samples/second) on a computational cluster with 7 GPUs. 
This timeframe is much faster than direct numerical simulation—Solving for 
the permeability along the three principal directions (i.e., x, y, z) of our train-
ing dataset numerically using OpenFoam® required over 6,000 simulation 
hours on a computational cluster of 32 × 3.20 GHz CPUs (i.e., ∼10 samples/
hour). We note that the CNN model's fast prediction time is built upon labe-
led datasets obtained from direct numerical simulations, and the model 
requires additional time for model architecture development and hyper-pa-
rameter optimization. Moreover, direct numerical simulations provide addi-
tional information about fluid flow (e.g., velocity field) that state-of-the-art 
machine learning models are still struggling to predict accurately at the pore-
scale (Da Wang et al., 2020). However, the capability of providing accurate 
permeability predictions in real time justifies the significant computational 
resources used to train the 3D CNN model.

4. Conclusions
We have advanced the state-of-the-art of machine learning-driven digital rock permeability characterization. 
Specifically, we have assembled a diverse and massive dataset of over 57,500 unique subvolumes taken from CT 
scans of a variety of rock types. The true permeabilities of the subvolumes are obtained from direct numerical 
simulation via OpenFoam® and they range from 0 mD to over 20,000 mD (Figure 1). We perform data augmen-
tation to further increase the dataset size, and data balancing to reduce the dataset bias (Figures 2 and 3).

Our machine learning model is a 3D CNN that enables end-to-end permeability prediction. The model adopts a 
novel network architecture that encompasses an inception module capable of feature extraction at multiple scales 
(Figure 4). The trained model achieves excellent accuracy (Figures 5 and 6) compared to other existing CNN 
models for permeability prediction, as signified by the model's low mean absolute relative error (MARE = 0.093) 
and high coefficient of determination (R 2 = 0.95). We demonstrate that the model's superior accuracy stems 
from the large training dataset size (Figure 7a), the implementation of an inception module in place of sequential 
convolutional layers for feature extraction (Figure 7b), and the use of convolutional layers instead of pooling 
layers in down-sampling operations. Furthermore, the model performs well when it is used to predict the perme-
ability of previously unseen samples (Figure 8), which further demonstrates its generalizability. In addition to its 
accuracy, a key advantage of the model is its computational efficiency—Predicting the permeability of a single 
100 × 100 × 100 cubic voxel sample takes less than 5 milliseconds on a computational cluster with 7 GPUs.

Subsurface characterization based on images of rock samples (i.e., digital rock analysis) has become an impor-
tant tool in both academic and industrial applications in the past decade. Our work demonstrates the growing 
potential of applying machine learning models such as CNNs to achieve fast and accurate predictions in digital 
rock analysis. Increasing availability and variety of labeled datasets, more sophisticated network architecture 
(e.g., additional inception modules), and higher computing power can push the technology to new heights in the 
coming years.

Data Availability Statement
The data is publicly available on Zenodo, a general-purpose open-access repository (Elmorsy, 2022).

Figure 8. The three-dimensional convolutional neural network model achieves 
excellent accuracy when it is used to predict the permeabilities of previously 
unseen sandstone specimens. The dashed line represents perfect agreement 
between the predicted permeability and the true permeability obtained from 
direct numerical simulation.
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